

CONTROLLING NSW TOOLS AND CONFIGURATIONS UNDER OS/MVT
December 1, 1980 -- Document TR-24

CONTROLLING NSW TOOLS AND CONFIGURATIONS UNDER OS/HVT

by
Neil Ludlam

Denis De La Roca

December 1, 1980

Document TR-24S
UCLA Office of Academic Computing

5628 Math Sciences Addition
University of California C0012
Los Angeles, California 90024

* OTDC

Cop,

This work was sponsored by
the Advanced Research Projects Agency

of the Department of Defense,
under ARPA Order no. 2543, AzcesiJn For

Contract No. MDA 903-74-C-0083: TIS

ARPANET COMPUTER SERVICES IN SUPPORT OF uilL, FAB

THE NATIONAL SOFTWARE WORKS Un, d.

* June 1, 1975 - February 29, 1980
eY

William B. Kehl, Principal Investigator ,D; t. ili:,l",,-l
(213) 825-7511

C- SEMI-ANNUAL TECHNICAL REPORTS D!t , "
for period of

January 1, 1979 - December 31, 1979

The views and conclusions contained in this document are those of the
authors, and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or of the United States Government.

CONTROLLING NSW TOOLS AND CONFIGURATIONS UNDER OS/MVT
December 1, 1980 -- Part I: Summary

PAGE 1

REPORT SUMMARY

This report covers technical development at UCLA relating to the
National Software Works (NSW) during 1979. It is a combination of the
two Semi-annual Technical Reports covering the periods of January 1
through June 30 and July 1 through December 31 of 1979.

The primary goal of the NSW project at UCLA is to make the IBM Operating
System OS/MVT, and specifically its implementation on the UCLA IBM 3033,
a "tool-bearing host" within the NSW.

This report is primarily concerned with the design and implementation of
mechanisms required to execute "tool" programs at UCLA under NSW. These
mechanisms are: a "Foreman" to supervise execution of interactive
tools; a "Batch Job Package" to supervise execution of batch tools; and '

tools themselves.

A secondary concern in this report is the problem of configuration
management in the NSW system.

The subsequent sections of this report correspond to documents stored in
the NSW documentation repository maintained by the ,NSW Operations
Contractor, so each section has been made self-contained. For example,
each section has its own table of contents and reference summary, and
each section is independently paginated.

Part II: FM/360 -- The NSW MVT Foreman

This section describes FM/360, the Foreman implementation for
OS/MVT, from the aspect of its use as an NSW core-system
component.

Part III: The UCLA Encapsulator Command Interpretor

This section describes that subcomponent of FM/360 called the
"Encapsulator Command Interpretor", or ECI. The ECI can be viewed
as a separable piece of software that interprets a simple program
of statements that constitute a local interactive tool descriptor.
Interpretation of4, this program accomplishes the gathering of
information from the user, the setting up of input files, the

9P execution of the tool programs themselves, and the disposition of
output files.

The separation of function between the Foreman and the ECI is not
complete, however, it serves the useful purpose of breaking the
rather massive Foreman down into two more easily described parts.

L

-,~~ ** *.* ' * ,% V %Ig AV %

CONTROLLING NSW TOOLS AND CONFIGURATIONS UNDER OS/1.VT
December 1, 1980 -- Part I: SuImary

PAGE 2

Part IV: BJP/360 -- The MVT Batch Job Package

This section describes BJP/360, the NSW Batch Job Package as
implemented for OS*A3VT. The BJP performs operations that are not
supported by OS/MVT except through extensive local system
modifications. Such modifications must be made independently by
each OS/MVT installation, so that the BJP is considerably less
readily exportable than other OS/MVT NSW components.

Part V: Configuration Management

This section examines the problem of configuration management
under OS/MVT. It explores the options available using existing
mechanisms, and proposes some simple additional mechanisms that
might aid in configuration management.

0

!-

IS

p

Controlling NSW Tools and Configurations under OS/HVT
December 1, 1980 -- Part II: FM/360

PART II

FM/360 -- THE NSW MVT Foreman

This section is separately available
as UCLA document UCNSW-205

S

C I

ci%

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

TABLE OF CONTENTS

2. PART II: FM/360...................1
2.1. THE NSW FOREMAN.....................1
2.2. FM/360 AS A FOREMAN SUBSET.....................3
2.3. FM/360 COMMUNICATIONS SUMMARY.............6
2.3.1. TRANSACTIONS GENERICALLY ADDRESSED TO A FOREMAN ... 7

*2.3.2. TRANSACTIONS SPECIFICALLY ADDRESS-ED TO A FOREMAN ... 7
2.3.3. OTHER INCOMING TRANSACTIONS.............8
2.3.4. TRANSACTIONS ADDRESSED TO THE FRONT END..........9
2.3.5. TRANSACTIONS ADDRESSED TO A WORKS MANAGER..........9
2.4. PARAMETRIC DATA ELEMENTS.............10
2.4.1. PROGRAM NAME.................10

* ~2.4.2. TOOL TYPE..................10
2.4.3. TOOL INSTANCE ID................10
2.4.4. ENTRY VECTOR INDEX.....................10
2.4.5. PROCESS ADDRESSES................11
2.4.6. TOOL-DEPENDENT PARAMETER LIST..................11
2.4.7. START STATE..................12

0 2.4.8. WORKSPACE DESCRIPTOR....................12
2.4.9. TERMINATION REASON................12
2.4.10. TERMINATION SCENARIO................13
2.4.11. TERMINATION TYPE................13
2.4.12. FAULT DESCRIPTOR................13
2.4.13. ACCOUNTING LIST.....................14
2.4.14. STATUS LIST.........................14
2.4.15. USER ID.....................14
2.4.16. CONNECTION TYPE.................1
2.4.17. CONNECTION ID...................15
2.4.18. ATTRIBUTE CODE.................15
2.4.19. FILESPEC...........................15
2.4.20. SEMAPHORE SET.........................15

* 2.4.21. HELP DIRECTOR....................16,
2.4.22. NSW FILENAME.................16
2.4.23. LOCAL FILENAME....................16
2.4.24. ENTRY NAME.................16
2.4.25. REPLACE ENABLE.................16
2.4.26. HERALD.......................16
2.5. TRANSACTIONS SUPPORTED..................17
2.5.1. G/FM-BEGINTOOL.......................17
2.5.2. G/FM-WMOK...........................18
2.5.3. S/FM-ENDTOOL.........................18
2.5.4. S/FM-SAVE-LND.................18
2.5.5. S/FM-GUARANTEE.................18

C, 2.5.6. FOREMAN ALARMS.................19
2.5.7. S/FE-OPENCONN................19
2.5.8. S/FE-TOOLMALTED.........................19
2.5.9. G/WM-TOOLHALTED.......................20
2.5.10. G/WM-GET.............................20
2.5.11. G/WM-DELIVER.....................21

c 2.5.12. G/WM-LND-SAVED....................21
2.6. FM/360 PROGRAM LOGIC..................24
2.7. ECI PROGRAM LOGIC................32

NI

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

TABLE OF CONTENTS

2.8. APPENDIX: FM/360 INITIALIZATION PARAMETERS 35
REFERENCES 36

3

3

,.

0W

Controllirg NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

ILLUSTRATIONS

Figure 1: Foreman Relationship to Tool and NSW. 2
Figure 2: FM/360 Relationship to Tool and NSW. 4
Figure 3: Foreman Communications Paths.......... 5
Figure 4: FM/360 Call Tree 22
Figure 5: ECI Call Tree 27

S

I..

C

ILi

S

4;..

- ~ S.. * ~~ . '.~.2'%

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 1

2. PART II: FM/360

2.1. THE NSW FOREMAN

Within the National Software Works (NSW), each Tool-bearing host (TBH)
that is to support interactive tools is required to have a software
component called a "Foreman" (reference 1). The Foreman is that part
of the NSW core system which provides the NSW execution environment,
and the NSW monitor services, to the executing tool. It can be viewed
as a kind of emulator of the NSW execution environment, running in the
execution environment of the local system.

In the case of encapsulated tools (those which are unaware of the NSW
environment or services), the Foreman includes an Encapsulator
interface, which may be viewed as an emulator for the execution
environment in which the tool believes itself to be running, and as an
interface converter between that environment and the NSW tool
execution environment. These ideal relationships are illustrated in
figure 1.

The reader is assumed to be familiar with reference 1, which
prescribes the operation and protocols of an NSW Foreman, and with the
software environment provided by the NSW.

%J

-'

5 i

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 2

S

Figure 1: Foreman Relationship to Tool and NSW

LOCAL OPERATING SYSTEM
EXECUTION ENVIRONMENT /

* <....> /
* Local * Interactive Foreman
*Name * /
* Dictionary .;. .*. *. :.:.:.:.. .
* *1* / *1

A A. ;.A:.A..A * NSW-knowledgeable *

Tool *
* / *

I , I ,AA *,; ,, AA;

--------------------------------/

/ NSW EXECUTION
/ ENVIRONMENT

!

/
LOCAL OPERATING SYSTEM /
EXECUTION ENVIRONMENT /

/
******** *---------------------------------*

* *1 /I I
* Local < ---- > Interactive Foreman
*Name * I /
* Dictionary - :.I

,**,,:*** I * Encapsulator *

/* *----------------- *
/1* I I * I

* I Encapsulated I *
* I Tool I *

I* I I/*
------------ */*

1* / *

/

/ NSW EXECUTION
/ ENVIRONMENT

~-~ K-:-.

r-WW Wl I Mr S M X v .-WNW

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 3

2.2. FM/360 AS A FOREMAN SUBSET

This document describes FM/360, a Foreman implementation for IBM
real-memory systems. Specifically, FM/360 was developed to operate on

* the UCLA IBM System/360 Model 91KK under the MVT Operating System with
the Time-Sharing Option, TSO (we commonly refer to this combination as
OS/MVT). However, with the modificaton of certain installation -
dependent modules, it will operate on any upward - compatible system.

The constraints of IBM Operating Systems, along with the severe
* limitiation of main storage available in the real-memory system

OS/MVT, have combined to make FM/360 a much less comprehensive
component than an ideal Foreman should be. Major areas of
functionality have had to be omitted, and severe limitiations have
been placed on those areas of functionality that survive. The
resulting implementation is illustrated in Figure 2.

Specific differences include:

FM/360 does not maintain a Local Name Dictionary (LND), which is
the Foreman's crash-recovery cache. It is thus not possible to
recover a tool session if it is terminated by a crash of OS/MVT,
of the NSW, or of FM/360 itself.

* Accordingly, those Foreman scenarios dealing with crash recovery
are not supported by FM/360, although some of the corresponding
transactions are accepted. This includes the "save-LND" and
"Rebegintoo1" scenarios.

* Only encapsulated tools are supported. There is no
Tool-to-Foreman monitor-service interface that could be called
by a tool that was knowledgeable about NSW services.

* Encapsulation, which should be done through sub-monitoring of
the tool process, is simulated by pre- and post-tool-execution I

use of the "Encapsulator Command Interpretor" (ECI -- see
reference 7). The ECI attempts to set up the tool's operating
environment in such a way that, as it operates in its native
mode, the overall effects are the same as though it were being
dynamically monitored.

* FM/360 operates asynchronously to its tool task; however, it
shares its protection domain. Therefore, buggy tools can damage
the executing FM/360 process. For this reason an instance of
FM/360 is never permitted to recycle and monitor a second tool
instance. Every instance is required to use an entirely new
copy of the FM/360 code.

I.'

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 4

* Both the tool and FM/360 operate as one TSO swapped job. Since
the FM/360 code is large compared to many interactive tools, and
since TSO regions tend to be sized to accomodate those tools in
native mode, it may sometimes happen that large tools will be
unable to get the main storage that they need for execution.

Figure 2: FM/360 Relationship to Tool and NSW

LOCAL OPERATING SYSTEM EXECUTION ENVIRONMENT

.. ..:.:..:.,: . #############
* *#I # * *

* Encapsulator * # Encapsu- # * Encapsulator *

* Command * # lated # * Command *
000* Interpretor *0O# Tool #00* Interpretor *000
0* * #############* * 0 ----
O * ------------------- * 0

0*** * 0
0 F M / 3 60 0
0 0
000

NSW EXECUTION ENVIRONMENT

--time-->

J

3

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 5

Figure 3: Foreman Communication Paths

* NSW *
* User *

* NSW*
A

* SW* NSW *

-.-> Front I *
/ * End 1 *

/ * I *
/ "1'*"*"** ***

/ A l ,
/ II I

/ I I
_ _ _ _ / VI

* *<--* * *
* NSW * * NSW I*
* Works * * Foreman I*
* Manager *< --------------- >* *
* * * *"t

v

T .

* Tool *
* * ,

* *

q

"..ie

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 6

2.3. FM/360 COMMUNICATIONS SUMMARY

FM/360 functions as an NSW core-system process with generic name
"FOREMAN". It communicates with other NSW processes in a pattern
illustrated in Figure 3. One channel of communication, the direct
connection between the tool and the user, which is supervised by
FM/360, is a standard TELNET (reference 2) network connection. The
other channels use the NSW Network Transaction Protocol, or NTP
(reference 1, appendix 3), On an IBM system, NTP is implemented on
three levels:

* The procedure-call level is implemented by the PL/PCP subroutine
package (reference 3).

* The MSG message and direct-connection level is implemented by
the PL/MSG subroutine package (reference 4), which also uses the
PLOXI package (reference 5).

* The NSWB8 data encodement level is handled by the PL/B8\
subroutine package (reference 6).

FM/360 interacts with other NSW processes using well-defined procedure
calls, each of which consists of a single NTP transaction of the form
"Request/Reply", where the request may be either generically or
specifically addressed. Usually, we express such a transaction in the
form:

G/process-procedure (arguments) -> (results)

or

S/process-procedure (arguments) -> (results)

or

A/process (alarmnumber) -> (results)

where the three forms correspond to generic addressing, specific
addressing, and alarms, respectively. "Process" is a shorthand name
for the process that receives and executes the transaction, and
"procedure" is the name of the specific procedure that that process is
to perform. The "result" may be empty if only a positive or negative
acknowledgement is defined. In cases where no response of any kind is
expected, the arrow and the "result" are omitted.

% %

iU
0

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

- PAGE 7

2.3.1. TRANSACTIONS GENERICALLY ADDRESSED TO A FOREMAN

An NSW Foreman process should be prepared to process a well-defined
set of transactions. FM/360 can receive any of these, but it does
not necessarily respond in the way that the ideal Foreman would.

0 G/FM-BEGINTOOL (description of desired tool)
-> (description of started tool)

The "begintool" transaction establishes a tool instance.

G/FM-REBEGINTOOL (description of interrupted tool)
-> (description of reestablished tool)

The "rebegintool" transaction is intended to resume execution
of a tool interrupted by a system crash. FM/360 does not
support such restart. Should it ever receive this
transaction, it will treat it as though it were the
"begintool" transaction.

G/FM-WMOK (to be defined)
-> (to be defined)

The "wmok" transaction is intended to let a Foreman know that
the NSW Works Manager has crashed and restarted. It is
rejected by FM/360.

2.3.2. TRANSACTIONS SPECIFICALLY ADDRESSED TO A FOREMAN

S/FM-ENDTOOL (type and reason of termination)

The "endtool" transaction is intended to terminate execution
of a tool, whether or not the tool itself has terminated.

S/FM-SAVE-LND (reason for termination)
-> (accounting information)

The "save-lnd" transaction is intended to suspend execution of

a tool, so that it can be resumed later through "rebegintool".

S/FM-STOPTOOL (optional immediate restart point) ->

The "stoptool" transaction is intended to block the tool task
temporarily. It is not implemented by FM/360.

S/FM-STARTTOOL (restart point) ->

The "starttool" transaction is intended to unblock a tool
blocked by "stoptool". It is not implemented by FM/360.

N.

N.

Controlling NSW Tools and Configurations under OS/MVT
SsDecember 1, 1980 -- Part II: FM360

PAGE 8

S/FM-GUARANTEE (tool identifier)

The "guarantee" transaction is intended to let a Foreman know
that all the information it has entered into the NSW
core-system data bases is checkpointed, and can safely be
removed from the LND.

PA/FM (1)

Alarm code 1 is intended to signal a Foreman that a tool-abort
scenario is about to be begun.

A/FM (10) -> (status information)

Alarm code 10 is a request for NSW and Foreman status.

A/FM (11) -> (edited status information)

Alarm code 11 is a request for NSW and Foreman status edited
into a user-oriented form. It is rejected by FM/360.

A/FM (12) -> (accounting information)

Alarm code 12 is a request for current accounting information.

A/FM (13) -> (edited accounting information)

Alarm code 13 is a request for current accounting information
edited into a user-oriented form. It is rejected by FM/360.

2.3.3. OTHER INCOMING TRANSACTIONS

FM/360 will reject an incoming transaction in any of these cases:

* The calling process is not of generic class "WM" (the NSW Works

Manager).

* The requested procedure name or alarm code is unknown.

* The transaction uses the wrong addressing mode (generic vs.

specific).

* The transaction parameters violate the expected syntax.

* The alarm code is unknown.

%I.b

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 9

2.3.4. TRANSACTIONS ADDRESSED TO THE FRONT END

Once FM/360 is set onto a task by the Works Manager, much of the
rest of its communication is via transactions received from or
addressed to the NSW Front End which is controlling the tool-user's
console. Since a specific Front End process is assigned to the tool
instance, the outgoing Front End transactions are all specifically
addressed.

S/FE-OPENCONN (connection description)

The "openconn" transaction negotiates a direct connection
between a Foreman and a Front End.

S/FE-TOOLHALTED (accounting information)

The "toolhalted" transaction informs the Front End that tool
execution is complete.

2.3.5. TRANSACTIONS ADDRESSED TO A WORKS MANAGER

A Foreman uses transactions addressed to the Works Manager to obtain
file-system service for its tool and/or user, and also as a backup
resource in case the Front End is not available to gracefully
terminate a session. These services are not performed by the Works
Manager instance that created the Foreman instance, but by any Works
Manager. Therefore, these transactions are generically addressed.

G/WM-TOOLHALTED (accounting information) ->

The "toolhalted" transaction can also be sent to the Works ,5
Manager, when contact with the Front End is lost.

G/WM-GET (NSW file description)
-> (local copy description)

A Foreman issues the "get" transaction to obtain access to an
NSW file for its tool.

G/WM-DELIVER (local copy description)
-> (NSW file description)

A Foreman issues the "deliver" transaction to move a tool
output file back into the NSW file space.

G/WM-LND-SAVED (tool lists)
-> (exceptions)

The "lnd-saved" transaction informs the Works Manager that one
or more tool instances have been suspended abnormally.

...

Lk

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 10

2.4. PARAMETRIC DATA ELEMENTS

Every Foreman transaction includes a set of parameters encoded in an
NSWB8 LIST (reference 6). While the parameter structure of the
transaction is peculiar to its procedure, the elements of that
structure are commonly defined. This section gives FM/360's
interpretation of these elements.

2.4.1. PROGRAM NAME

NTP Transactions that initiate or re-initiate execution of a tool
include a "program name" datum represented as a character string.
FM/360 interprets this as the name of an ECI program to be extracted
from a local ECI program data base identified by the system control
language that set up the FM/360 instance. Actual names of
executable object programs are contained within ECI programs, and
are not known to the WM-resident tool descriptor.

Viewed another way, the "program name" is a pointer to the S

locally-resident portion of the Works Manager's Tool Descriptor.

2.4.2. TOOL TYPE

The NSW tool type is an "index" datum that is intended to tell a
Foreman whether the tool uses NSW transactions, MSG calls, and/or
direct connections. Since FM/360 only supports encapsulated tools
that use a single TELNET connection, it does not actually examine
this datum.

2.4.3. TOOL INSTANCE ID

The "tool instance id" is a 32-bit quantity which serves as a handle
onto the Works Manager's internal representation of a tool instance.
FM/360 gets it as a part of a tool-initiating transaction, remembers
it, and subsequently uses it in outgoing transactions that need to
identify the tool. It is not considered to have structure or to be
interpretable by the local system.

2.4.4. ENTRY VECTOR INDEX

The "entry vector index" datum supports the notion of a Foreman
process as a sub-supervisor for a tool process. Under this notion,
the Foreman could conceivably start and stop execution of the tool
process, altering its location counter in meaningful ways. The
"entry vector" consists of a virtual vector of well known entry
point types, for which, corresponding to each tool instance, there
exists a real vector of specific entry points. Each slot in the
vector corresponds to a type of entry, such as warm-start,
cold-start, termination, continue, etc. The datum passed to a
Foreman under the name "entry vector index" is actually an index
into the entry vector, and thus selects an entry point at which tool

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 11

exection is to be started or restarted.

FM/360 has little use for the entry-vector notion. Under OS/MVT,
true sub-supervision does not exist. The location counters of
executing programs cannot, in general, be altered in ways that were
not explicated at the time of compilation of the program.
Therefore, FM/360 generally ignores the "entry vector index" datum
in a transaction. One exception exists, though it is not a useful
one: if the "begintool" transaction includes an "entry vector
index" of zero ("do not start tool at all"), then the tool will be
set up in every way, but its process will remain blocked.
Theoretically, it could then be unblocked through the "starttool"
transaction; however, since that transaction is unsupported, the
tool will in fact be permanently blocked.4

To use FM/360 in the way intended by its designers, it is advisable
to set "entry vector index" to 1 ("cold-start entry") for
tool-creating transactions and to 4 ("continue") in other
transactions. Such settings will continue to operate as expected if
and when FM/360 begins to interpret this datum.

2.4.5. PROCESS ADDRESSES

The immediate environment of an instance of FM/360 includes five
specifically addressable NSW processes: the Front End, the
originating Works Manager (other instances of the Works Manager,
such as those addressed in "get" transactions, are generically
addressed), the Foreman process itself, the governed tool process,
and the "creating process". This last is invariably the same as the
Front End process in the current implementation, but it might not be
in some future NSW. The specific addresses of these processes are
propagated throughout the group in the NTP transactions that create
the associations. When one process creates another, as the Works
Manager does to the Foreman, the exchange of process names occurs as
a natural consequence of the NTP transaction; however, the addresses
of other process in the group are carried as data elements within
the bodies of the transactions themselves.

FM/360 is specifically aware of its own process, the creating
Works-Manager process, and the Front End process. Of these, only
the Front End process address is extracted from the body of a
transaction. FM/360 always returns a null process name (a bitstring
of length zero) as the address of its tool. This is defined to mean
that the tool and Foreman share an NSW process. In the case of
FM/360, which is not a sub-supervisor, this is appropriate.

2.4.6. TOOL-DEPENDENT PARAMETER LIST

The "tool-dependent Parameter List" (TDPL) consists of a list of
character strings, kept in the Works Manager's tool descriptor, and
passed to the Foreman when a tool instance is to be created. It is
not interpreted by the Works Manager in any way. It should be

V,1

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 12

considered to be a piece of Foreman data tabulated, for convenience,
by the Works Manager.

Early versions of FM/360 used the TDPL to hold the information that
is now stored locally in the ECI program. The current
implementation does not examine it at all.

2.4.7. START STATE

The "start state" datum is a boolean state flag set by a Foreman to
indicate whether its tool is currently running or stopped. It is
set in the reply to "begintool" according to whether the "entry
vector index" datum was zero or non-zero. However, since non-zero
values of "entry vector index" have already been shown to be not
useful in FM/360, it seems appropriate to say that a "false" value
of "start state" is possible but not useful in FM/360.

2.4.8. WORKSPACE DESCRIPTOR

When FM/360 creates a tool instance, it returns a "workspace
descriptor" for the purpose of defining the subspace of the local
host file space in which the Works Manager is to build tool copies
of NSW files for the tool. This descriptor consists of two
character strings, the workspace name" and the "access
information". These two data map directly into the "directory" and
"password" data passed to File Package FP/360 (reference 8) when it
is operating on behalf of FM/360. The workspace name is always
filled with the TSO logon directory under which FM/360 is operating.
In the UCLA implementation, this consists of a character string of
the form "cccccc.uuu", where "cccccc" is a UCLA "charge number", and
"uuu" is a TSO "Userid". This form is not uniform across all
MVT/TSO implementations, but the governing rule is this: the
workspace is that character string, which, when concatenated ahead
of a simple file name, with a period between, and with the entire
construct then enclosed in single quotes, results in the
fully-qualified file name that is equivalent, under the
installation's data-set naming rules, to the simple name. This
definition depends on the syntax of MVT/TSO file names as given in
Reference 9.

2.4.9. TERMINATION REASON

When FM/360 is reporting that a tool has terminated, or has been
terminated, it sends a "termination reason" code. Likewise, when
FM/360 receives a transaction instructing it to terminate a tool, it
receives a "termination reason" code. If the tool terminates under
its own control, FM/360 will send a termination reason code of 4
(direct tool termination). In other cases, it will simply echo the
termination reason code sent it in the transaction that caused it to
terminate the tool.

iS

55 "'i ~ i . . t"V ' .D\ % *p

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 13

2.4.10. TERMINATION SCENARIO

When FM/360 is reporting the demise of a tool, it sends a
termination scenario" datum which clarifies the mechanism by which

the demise came about. It has the values:

1 -> The tool halted on its own.

2 -> The tool was ended because of an "endtoool" transaction
requesting normal termination.

3 -> The tool was ended because of an "endtoool" transaction
requesting abort termination.

2.4.11. TERMINATION TYPE

When FM/360 is asked to terminate a tool, it is given a "termination 'S

type" code, instructing it how, or whether, to effect delivery of
tool output files. This datum has the values:

1 -> Abort the tool and deliver nothing.

2 -> Perform a delivery dialogue with the user. For each
potentially deliverable file, ask the user for a disposition
decision.

3 -> Perform automatic delivery, without user aid.

FM/360 uses this dataum to distinguish an "abort" type tool
termination scenario from an "end" type scenario, for the purpose of
filling in the "termination scenario" datum mentioned above.
Otherwise, it ignores it. The form of delivery is coded into the
ECI program (the local extension of the Tool Descriptor), and cannot
be changed (see reference 7).

2.4.12. FAULT DESCRIPTOR

There are two types of "fault descriptors" in FM/360 transactions:
the first kind are appended to all transaction replies by the PL/PCP
package (reference 3), which performs transaction management; the
second kind is included explicitly in the "endtool" transaction.

The use of PL/PCP fault descriptors by FM/360 is limited to the
rejection of unimplemented or undecipherable transactions.

The fault descriptor in "endtool" is always a list of count zero.

.5,

' , , , I_ , :_.," , . . . , ., .'.'' X. ' '. " "'.' '.'.'" " ,"". ." " ": . . I . '" "" , .5'

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 14

2.4.13. ACCOUNTING LIST

Whenever a tool is terminated, a Foreman is expected to get
information to the Works Manager which will enable the tool
execution to be billed to the proper NSW user. This is usually done
in the "endtool" request, whether it be addressed to the Front End
(usually) or directly to the Works Manager (when Front End contact
is lost), but it can also be done in the "save lnd" transaction.
The FM/360 version of the "accounting list" is a NSWB8 (reference 6)
structure of the form:

LIST(cost=integer,
components
=LIST(cpu-seconds

=LIST(type=index-l,
amount=integer),

connect-minutes
=LIST(type=index=2,

amount=integer),
i/o-operations
=LIST(type=index=3,

amount=integer)))

FM/360 fills in these fields accurately; however, the "cost", a
value in cents, may not be exactly what will be billed NSW through
the normal cyclic billing system at UCLA. It is a best estimate.

2.4.14. STATUS LIST

In response to a "status alarm", FM/360 generates a "status list"
consisting of four state variables:

1) External tool state (index), with values:

0 -> running.
1 -> never started.
4 -> terminated.

2) Internal tool state: always zero.

3) Operating System state: always zero.

4) Program counter: always zero.

2.4.15. USER ID

When FM/360 sends "toolhalted" to the works manager, it uses a
syntax defined for use by the Front End. One of the elements of the
transaction is the "user id", a datum kept only by the Front End.
When FM/360 sends this datum, it always has the value zero.

NA

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 15

2.4.16. CONNECTION TYPE

The "connection type" code is used by FM/360 in the "openconn"
transaction. It is an index variable which always has the value 1,
meaning that a TELNET connection is being requested.

2.4.17. CONNECTION ID

The "connection id" code is used by FM/360 in the "openconn"
transaction. It is an index variable which usually has the value 1;
however, when FM/360 loses touch with the Front End and attempts to
establish a new connection, it will increment the value used for the
original connection by 1. This scheme eliminates the possibility
that the Front End will not yet have noticed the broken connection,
and will thus believe that the request is a duplicate.

2.4.18. ATTRIBUTE CODE

The "attribute code" is used in the "get" and "deliver"
transactions, which are always issued as a result of interpretation
of an ECI statment. Most of the arguments to those transactions are
calculated in or coded into the ECI program. It is useful to think
of the ECI program as an extension of the Tool Descriptor kept by
the Works Manager. In this context, the Tool Descriptor contains a
vector of Global File Type (GFT) lists, (as described in reference
8), and the ECI program contains indices into that vector, each of
which is a shorthand name for the list of GFT's itself. The
"attribute code" is such an index. It is expanded into the actual
list of GFT's by the Works Manager when it is making up the
corresponding transaction to the File Package.

2.4.19. FILESPEC

Like "attribute code", the "filespec" argument to the "get"
transaction comes from the ECI program; however, it is usually
gotten through user query, rather than being coded in. It is a
character string that identifies the NSW file being addressed. The
i"get" also returns a "new filespec", which is possibly altered
through disambiguation, in the same form.

2.4.20. SEMAPHORE SET

The "semaphore set" argument is a boolean that requests the Works
Manager to set the NSW "semaphore" on a file. Like the "attribute
code", it is coded into the ECI program. At this writing, NSW
semaphores are not functional, so it is not advisable to set this
flag.

C1

% a .~

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 16

2.4.21. HELP DIRECTOR

The "help director" argument is an index that tells the Works
Manager how to direct "help" calls if more information is needed,
such as in the standard file disambiguation procedure. FM/360
always sets it to zero, meaning to ask the user directly for help.

2.4.22. NSW FILENAME

"Get" and "deliver" return full NSW file names as results. These
are character strings which may be considered to be just like
"filespecs" except that they are fully disambiguated and have all
levels expressed.

2.4.23. LOCAL FILENAME

"Get" returns, and "deliver" expects, a "local file name", which is
a character string meaningful to the local file system. In the case
of FM/360, it is in the form of an OS/HVT DSNAME (reference 9). It
can be a quoted, fully qualified name, or an unquoted name relative 0
to the directory (workspace) in which the FM/360 instance is
operating.

2.4.24. ENTRY NAME

For the purposes of Ff/360, an "entry name" can be considered to be
just another "filespec". NSW distinguishes between the two because
of different rules for disambiguation.

2.4.25. REPLACE ENABLE

The "replace enable" argument to "deliver" tells the Works Manager
whether an existing file with the same name is to be replaced. Like
"semaphore set", this always comes from the ECI program.

2.4.26. HERALD

Whenever NSW processes wish to perform a formal handshake, they
exchange messages containing "heralds". A herald is just a
character string identifying the sender. In this implementation,
FM/360 always sends a herald of:

FM/360 HERALD

and it never examines any incoming herald.

.4

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 17

2.5. TRANSACTIONS SUPPORTED

An incoming generic transaction is always delivered to a virgin
instance of FM/360. Usually, this will mean that MSG central will
create an FM/360 instance, wait for it to materialize its NSW process,
and then deliver the transaction-creating message. There are some
mechanisms in MSG central as implemented at UCLA wich might cause a
virgin FM/360 to be materialized and waiting at the time this
transaction is received. When this is the case, the transaction is
simply assigned to the waiting process.

An incoming specific transaction is always delivered to the specific
process to which it is addressed. FM/360 switches its attention from
generic messages to specific messages when it has accepted a
"begintool" to process.

2.5.1. G/FM-BEGINTOOL

The "begintool" procedure creates an instance of a tool for a
specific Works Manager process (the caller) and a specific Front End
process (identified in the transaction). In this implementation,
FM/360 can be thought of as basically existing for the purpose of
executing the "begintool" procedure. Whenever an instance of FM/360
is active, it is probably either waiting for work or processing as a
result of a "begintool" transaction. Most other transactions to
which FM/360 responds in other than a trivial way are meaningful
only in the context established by a previous "begintool"
transaction. Its syntax is:

G/FM-BEGINTOOL (program-name,
tool-type,
tool-instance-id,
entry-vector-index,
Front-End-address,
creator-address,
tool-dependent-parameter-list)

-> (start-state,
workspace-descriptor,
tool-address)

If this transaction is completed by an error-mode reply, then no
tool instance has been created, and the FM/360 instance sending the
reply has dematerialized.

If the transaction is completed normally, then a tool instance
exists, and the replying instance of FM/360 is in charge of it and
will be receptive to specifically-addressed transactions on its
behalf.

iV

u
°,

% % % i .' % -, -,% % % %" ,',," % " % -. .. -. ,. -. -."-."-.t." % .%.j-.'.'. %'%' ,'b.',- " ,'. " .'." " - % , % " -

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 18

2.5.2. G/FM-WMOK

The "WMOK" transaction is intended to let a Foreman know that the
NSW Works Manager has crashed and restarted. It is rejected as
"unimplemented" by FM/360. The transaction is not parsed, so its
syntax is immaterial.

2.5.3. S/FM-ENDTOOL

The "endtool" transaction is intended to terminate execution of a
tool, whether or not the tool itself has terminated. The
transaction consists only of a single message. The syntax is:

S/FM-ENDTOOL (tool-instance-id,
termination-scenario,
termination-reason,
termination-type,
fault-descriptor)

This transaction does not expect a direct reply; however, it and the
"toolhalted" transaction are considered to be mutual confirmations
of each other.

Due to serious deficiencies in the control-blocking mechanisms of
MVT/TSO, if "endtool" is received while the tool task is waiting for
terminal input the entire TSO job (Foreman and tool) will deadlock.
For this reason, the preferred way to terminate a tool is through
the tool's own voluntary termination command.

2.5.4. S/FM-SAVE-LND

The "save-lnd" transaction is intended to suspend execution of a
tool, so that it can be resumed later through "rebegintool". Since
FM/360 does not support resumption of suspended tools, this
transaction is treated like another form of "endtool", with
different syntax and a different behavioral scenario. The syntax
is:

S/FM-SAVE-LND (tool-instance-id,
termination-reason)

-> (accounting-list)

2.5.5. S/FM-GUARANTEE

The "guarantee" transaction is intended to let a Foreman know that
all the information it has entered into the NSW core-system data
bases is checkpointed, and can safely be removed from the LND. It
is received by FM/360 as a formality, since no actual LND is kept.
The syntax is:

'V 4 ". "' * ~4- .gv..r ..- r.~~ .,~.id ~ -~.S~~a*a.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 19

S/FM-GUARANTEE (tool-instance-id)

FM/360 will accept and ignore this transaction. At those moments
when a more complete Foreman implementation would wait for this
transaction before disappearing, so will FM/360; however, it is not
waiting to take any action, but only to give the appearance of
obeying standard Foreman scenarios.

2.5.6. FOREMAN ALARMS

FM/360 is receptive to three alarms: Alarm code 1 is intended to
let a Foreman know that an abort-type "endtool" request is on its
way. This allows the Foreman to flush any busy work it is doing on
behalf of the tool, and to search forward in its input messages for
the promised abort.

A/FM (1)

Alarm code 10 is a request for NSW and Foreman status.

A/FM (10) -> (status-list)

Alarm code 12 is a request for current accounting information..

A/FM (12) -> (accounting-list)

2.5.7. S/FE-OPENCONN

FM/360 issues the "openconn" transaction when it wishes to open the
direct connection between the user and the tool. Theoretically, a
Foreman can open various connections of various types to the user,
including the case of opening none at all; however, FM/360 only
supports the case where the tool is controlled by a single TELNET
connection. To the tool, this connection appears to be a local
terminal operated by a user logged onto TSO. There is no actual
reply to this transaction; the Front End responds by actually
opening the connection. The syntax is:

S/FE-OPENCONN (connection-type,
process-name,
connection-id)

where "process-name" is always a bitstring of length zero, implying

that the sending process is to manage the connection.

2.5.8. S/FE-TOOLHALTED

The "toolhalted" transaction informs the Front End that tool
execution is complete, either by voluntary termination or as a
result of a previous "endtool" transaction. It is sent to the Front
End process named in the "begintool" transaction. When sent to a

Controlling NSW Tools and Configurations under OS/MVT
Decembe. 1, 1980 -- Part II: FM/360

PAGE 20

Front End, this transaction consists only of a single message; it is
considered to be a reply to, or to expect a reply of, the "endtool"
message. These two messages are configured in such a way that a
race between them will not matter. The syntax is:

S/FE-TOOLHALTED (tool-instance-id,
termination-scenario,
termination-reason,
accounting-list,
fault-descriptor)

where "fault-descriptor" is always a list of count zero.

2.5.9. G/WM-TOOLHALTED

In most particulars, this is just like the "toolhalted" transaction
that would go to the Front End. It is only used if an "endtool"
transaction cannot be coaxed from the Front End after a reasonable
amount of time. Unlike the Front-End variety, this transaction
expects a confirming reply; however, no data is returned. The
syntax is:

G/WM-TOOLHALTED (user-id,
tool-instance-id,
termination-reason,
accounting-list)

-> ()

where "user-id" is always zero.

2.5.10. G/WM-GET

The "get" transaction makes a tool copy of an NSW file. In theory,
this transaction is issued in response to a request from the tool to
the Foreman. In FM/360, it is issued only as a result of
interpretation of an ECI "GET" statement, which specifies most of
its arguments either through calculation, user query, or direct
coding. The syntax is:

G/WM-GET (attribute-code,
filespec,
semaphore-set,
help-director,
tool-instance-identifier)

-> (nsw-filename,
local-filename,
new-filespec)

V. V

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 21

Where "help-director" is always zero.

2.5.11. G/WM-DELIVER

The "deliver" transaction makes an NSW file out of a tool copy. In
theory, this transaction is issued in response to a request from the
tool to the Foreman. In FM/360, it is issued only as a result of
interpretation of an ECI "PUT" statement, which specifies most of
its arguments either through calculation, user query, or direct
coding. The syntax is:

G/WM-DELIVER (attribute-code,
local-file-name,
entry-name,
replace-enable,
help-director,
tool-instance-identifier)

-> (nsw-filename)

Where "help-director" is always zero.

2.5.12. G/WM-LND-SAVED

The "lnd-saved" transaction informs the Works Manager that execution
of one or more tool instances has been terminated abnormally. There
are two lists of tools sent to the Works manager. The first is of
tools that have been terminated, and the second is of tools that
should not be restarted through "rebegintool". The Works Manager
returns a list of those tools that it was unaware of. The syntax
is:

G/WM-LND-SAVED (fm-herald,
LIST(tool-instance-id),
LIST(tool-instance-id)

-> (wm-herald,
LIST(tool-instance-id)

FM/360 sends "Ind-saved" at the end of processing "save-lnd", to
inform the Works Manager that the tool just saved should not be
restarted. To do this, it includes the single tool instance as the
sole element of both lists. In this case, the contents of the
returned tool list seem immaterial, so that list is only checked for
syntactic correctness.

% 4 . I % ' %

Controlling NSW Tools and Configurations under OS/HVT
December 1, 1980 -- Part II: FM/360

PAGE 22

Figure 4: FM/360 Call Tree.

FMDI SP
FMC INIT
FMSTAT
FMINIT
FIIREJEC FIITWAIT FMANAL*
FMBEGIN

FMPCLN
FIIDCRSH FNFLND *

FMCCFE

FMDNIT FMDET TISUBS

FMRBEG FHTWAIT FMANAL*
FMUID
FHREJEC FMTNAIT FMANAL*

FMPBEG FHREJEC FMTNAIT FMANAL*
FMBLND *

FMDSAVE
FNFLND *;

FMMLOST *

FNHSAVE *

FMCCFE
FIIDET TISUBS
FMWLNDS FMNWAIT FMANAL *
FMRSAVE FMUID

FNNWAIT FMANAL *
FNREJEC FII'NAIT FMANAL*

FMSLND .

FMFETH FMDSTAT FMSTAT
FNTWAIT FMANAL * 4

FMDEND
FMFLND
F1ICCFE
FMDET TISUBS
FIIDELV ECI
FMAWGUA FKANAL * 1
FHAWEND FMANAL *
FMWMTI{ FMNWAIT FMANAL *
FMFETH FMDSTAT FMSTAT

FNIVAIT FIIANAL *
FADOPEN

FMCCFE)
FMOCFE
ECI

FMDRUN
FMRSTRT
FMANAL * *-These routines are stubbed.

TISUBS(continued)

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 23

Figure 4 (continued): FM/360 Call Tree.

* - "FMANAL" is a recursive subtree:

EMANAL FMALARM FMDSTAT
FMREJEC FMTWAIT FMANAL *

FMSAVE FMREJEC FMHWAIT FMANAL *
FMEND FMREJEC FMTWAIT FMANAL *
FMSTOP e
FMSTART *
FMREJEC FMTWAIT FMANAL *

- These routines are stubbed.

'I

Controlling NSW Tools and Configurations under OS/VT
December 1, 1980 - Part II: FM/360

PAGE 24

2.6. FM/360 PROGRAM LOGIC

Fl/360 has the overall structure shown in figure 4. The following
sections detail the functions of the various routines listed there.
Some trivial routines are not listed.

ECI -- stands for ECINTRP, the main program of the ECI. Internal
logic of the ECI is detailed in the next section.

FMALARM -- processes and replies to all incoming alarms.

FMANAL -- is called whenever any asynchronous event occurs on the
PL/PCP (reference 3) communications protocol level. FMANAL
functions like a subdispatcher for all the specifically
addressed transactions that can be received by FM/360. It
analyzes such events and calls appropriate subroutines.

FMAWEND -- awaits an "endtool" transaction when "toolhalted" has been

sent first.

FMAWGUA -- awaits a "guarantee" transaction.

FMBEGIN -- Executes the "begintool" transaction. FMBEGIN is basically
a state-driven subroutine dispatcher that routes control
according to a master state variable with values:

Initializing
Opening
Running
Ending
Saving
Crashing
Done

FMBLND -- is a stub for the routine that will build the LND.

FNCCFE -- closes the TELNET connection to the front end.

FMCINIT -- initializes the FM/360 common data area.

FMDCRSH -- directs control through the "crashing" state, which is
entered when F1/360 finds itself in a logical cul-de-sac.

FMDELV -- performs post-tool-execution file delivery. In the present
implementation of FM/360, this consists of simply returning
control to the ECI to continue interpreting the ECI program that
was interrupted to run the tool program.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 25

FMDEND -- directs control through the "ending" state, which is entered
when the tool terminates, or when "endtool" is received.

FMDET -- detaches the tool subtask.

FMDINIT -- directs control through the "initializing" state, which is
entered when a "begintool" is first executed.

FMDISP -- is a generic transaction dispatcher. It is the main program
of FM/360, which awaits a generic transaction, identifies the
requested procedure, and calls the appropriate processing
subroutine. In the current implementation, it is virtually
null, since it can only really call FMBEGIN.

FMDOPEN -- directs control through the "opening" state, which is
entered immediately after initialization is complete, and again
any time the TELNET connection breaks.

FMDRUN -- directs control through the "running" state. In this state,
FM/360 is basically idle, waiting for the tool program to
finish, or for a specifically-addressed NSW transaction.

FMDSAVE -- directs control through the "saving" state. In the current
implementation, no LND saving actually occurs, but this is
because the routines that this one calls are stubbed.

FMDSTAT -- calculates differences in statistical readings taken at
various times during tool execution, particularly for status %
queries and final accounting.

FMEND -- parses and distributes the arguments of "endtool".

FMFETH -- builds a "toolhalted" transaction and attempts to send it to
the Front End.

FMFLND -- is a stub for the routine that will free the LND.

FMINIT -- reads the FM/360 configuration data set.

FMMLOST -- is a stub for a routine to handle the case where contact
with the Works Manager is lost during "saving" state.

FMMSAVE -- is a stub for a routine to do whatever processing is
indicated when "Ind-saved" has been successfully delivered to
the Works Manager.

FMOCFE -- opens a TELNET connection to the Front End.

a7

Controlling NSW Toois and Configurations under OS/MVT
December 1, 1980 -- Par II: FM/360

PAGE 26

FMPBEG -- parses the "begintool" parameters.

FMPCLN -- cleans up storage allocations supporting the ECI.

FMRBEG -- replies to the "begintool" transaction.

FMREJEC -- rejects a pending transaction with a parametric error code.

FMRSAVE -- replies to the "save-lnd" transaction.

FMRSTRT -- types a message identifying the codes associated with a
tool program ABEND. If so instructed by a switch in the FM/360
initialization parameters, allows the user the opportunity to
restart the failing tool program or to enter TSO TEST. These
capabilities are for FM/360 debugging, and are not normally
enabled in the production NSW.

FMSAVE -- processes the "save-lnd" transaction.

FMSLND -- is a stub for a routine to actually save an LND.

FMSTART-- is a stub for a routine to process the "starttool"
transaction.

FMSTAT -- reads the various statistical "clocks" that are processed by
FMDSTAT.

FMSTOP -- is a stub for a routine to process the "stoptool"
transaction.

FMTWAIT -- awaits completion of a given transaction, or arrival of a
more important one (such as an "endtool").

FMUID -- locates the TSO "userid" under which FM/360 is operating.
The userid defines the "tool workspace" name.

FMWLNDS -- builds and sends an "lnd-saved" transaction.

FMWMTH -- builds a "toolhalted" transaction and attempts to send it to
the Works Manager.

TISUBS -- stands for an Assembler-language subroutine package that
interfaces with OS/MVT's "task management" facilities. It
provides "attach", "detach", "start", and "stop" services.

Controlling NSW Tools and Configurations under OS/HVT
December 1, 1980 -- Part II: FM/360

PAGE 27

Figure 5: ECI Call Tree.

ECINTRP ECALLOC NEXTINT NEXTEL EVAL*
NEXTERK

*NEXTSTR NEXTEL EVAL *
NEXTBRK

PUTSYMB TRIMB
UPCASE

TRIMB
UPCASE

* PLIDAIR
ECDELET NEXTSTR NEXTEL EVAL*

NEXTBRK
PUTSYMB TRIMB

UPCASE
TRIMB

* PLIDAIR
ECDUNP TRIMB
ECELIF NEXTEL EVAL*

NEXTBRK
ECELSE
ECEND

* ECENDL
ECEXEC NEXTSTR NEXTEL EVAL*

NEXTBRK
PUTSYMB TRIMB

UPCASE
TRIMB
UPCASE

ECFREE NEXTSTR NEXTEL EVAL*
NEXTBRK

TRIMB
UPCASE
PLIDAIR

LECYREED NEXTSTR NEXTEL EVAL*
NEXTBRK

TRIMB
UPCASE
PLIDAIR

(continued)

e...

Controlling NSW Tools ana Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 28

Figure 5 (continued): ECI Call Tree.

ECGET NEXTEL EVAL *
NEXTBRK

NEXTINT NEXTEL EVAL*
NEXTBRK

TRIME
NEXTSTR NEXTEL EVAL*

NEXTBRK
PUTSYMB TRIMB

UPCASE
SETQ
UPCASE

ECIF NEXTEL EVAL*
NEXTBRK

ECINCLU FRECFM UPCASE
FREEWB
GETWB
NEXTEL EVAL*

NEXTBRK
PUTSYMB TRIMB

UPCASE
SUBST EVAL *

GETSYMB TRIMB
UPCASE

TRIMB
UPCASE
PLIDAIR

ECINDEX NEXTEL EVAL*
NEXTBRK

COMPARE UPCASE
NEXTLST NEXTBRK

SUBST EVAL*
GETSYMB TRIMB

UPCASE
PUTSYIB TRIMB

UPCASE
SETBRK GETSYMB TRIME

UPCASE
SUBST EVAL *

GETSYMB TRIMB
UPCASE

TRIME
UPCASE

(continued) .

imaN..~~~f Wb am. U* III W MI O MR en'%W WEN ~ Ivw~

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 29

Figure 5 (continued): ECI Call Tree.

ECINTER FREEWB
GETWB
TRIME

ECHENU ECINPUT NEXTEL EVAL
NEXTBRK

SETBRK GETSYMB TRIMB
UPCASE

TRIMB
EVAL *

* NEXTEL EVAL*
NEXTBRK

NEXTLST NEXTBRK
SUBST EVAL*

GETSYMB TRIMB
UPCASE

*PUTSYM TRIMB
UPCASE

TRIflE
UPCASE

ECNOTE NEXTEL EVAL*
NEXTBRK

ECPUT NEXTEL EVAL *
NEXTBRK

NEXTINT NEXTEL EVAL*
NEXTBRK

TRIflE
NEXTSTR NEXTEL EVAL*

*PUTSYMB TRIMB EXER

UPCASE
SETQ
UPCASE

ECQUERY ECINPUT NEXTEL EVAL*
NEXTBRK

I4 SETBRK GETSYMB TRIMB
UPCASE

TRIflE
EVAL *

NEXTEL EVAL*
NEXTBRK

*NEXTLST NEXTERK
SUBST EVAL*

GETSYMB TRIflE
UPCASE

(continued)

.6'

,%Wvrl~wle

Controlling N4SW Tools and Contigurations under OS/HVT
December 1, 1980 -- Part II: FM/z60

PAGE 30

Figure 5 (continued): ECI Call Tree.

PUTSYMB TRIME
UPCASE

TRIMB
UPCASE

ECCREATE NEXTINT NEXTEL EVAL*
NEXTBRK

NEXTSTR NEXTEL EVAL *
NEXTBRK

PUTSYMB TRIMB
UPCASE

TRIMB
UPCASE
PLIDAIR

ECSET NEXTEL EVAL*
NEXTERK

PUTSYHB TRIMB
UPCASE

ECSETQ NEXTSTR NEXTEL EVAL*
NEXTBRK

PUTSYMB TRIMB
UPCASE

SETQ
TRIMB
UPCASE

ECSTOP NEXTEL EVAL*
NEXTERK

ECSUBSC NEXTEL EVAL *
NEXTBRK

NEXTLST NEXTBRK
SUBST EVAL

GETSYMB TRIME
UPCASE

PUTSYMB TRIME
UPCASE

SETBRK GETSYMB TRIMB
UPCASE

ECWHILE FREE WB
GETSYMB TRIME

UPCASE
GENWB
NEXTEL EVL*

NEXTBRK

(continued)

Controlling NSW Tools and Configurations under OS/HMlT
December 1, 1980 -- Part II: FM/360

PAGE 31

Figure 5 (continued): ECI Call Tree.

GETSYHB TRIMB

NEXTBRK UCS

*PUTSYMB TRIMB
UPCASE

UPCASE

SUBST EVAL * UCS
GETSYMB TRIME

TRIMB
UPCASE

* -EVAL is a common recursive subtree:

EVAL GETSYNB TRIME
UPCASE

SUBST EVAL*
TRIMB
UPCASE

P- l' I I

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 32

2.7. ECI PROGRAM LOGIC

The external specifications of the ECI are covered in detail in
reference 7, and are not repeated in this document; however, reference
7 does not deal with program logic. The ECI subcomponent has the
overall structure shown in figure 5. The functions of its major
routines are:

COMPARE -- compares two character strings without regard to case.

ECALLOC -- processes the ECI ALLOCATE statement.

ECDELET -- processes the ECI DELETE statement.

ECDUMP -- dumps ECI storage for debugging.

ECELIF -- processes the ECI ELIF statement.

ECELSE -- processes the ECI ELSE statement.

ECEND -- processes the ECI END statement.

ECENDL -- frees resources allocated to an exiting recursion level.

ECEXEC -- processes the ECI EXECUTE statement.

ECFREE -- processes the ECI FREE statement.

ECFREED -- processes the ECI FREED statement.

ECGET -- processes the ECI GET statement.

ECIF -- processes the ECI IF statement.

ECINCLU -- processes the ECI INCLUDE statement.

ECINDEX -- processes the ECI INDEX statement.

ECINPUT -- gets ECI input from the user teminal.

ECINTER -- processes the ECI INTERPRET statement.

ECINTRP -- is the ECI main program. For any recursion level, it loops
through the program, identifying statements and calling the
corresponding statement processors.

ECMENU -- processes the ECI MENU statement.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 33

ECNOTE -- processes the ECI NOTE statement.

ECPUT -- processes the ECI PUT statement.

ECQUERY -- processes the ECI QUERY statement.

ECCREATE -- processes the ECI CREATE statement.

ECSET -- processes the ECI SET statement.

ECSETQ -- processes the ECI SETQ statement.

ECSTOP -- processes the ECI STOP statement.

ECSUBSC -- processes the ECI SUBSCRIPT statement.
.

ECWHILE -- processes the ECI WHILE statement.

EVAL -- is the expression evaluator which processes every operand to
every ECI statement.

FRECFM -- determines the record format of a data set.

FREEWB -- frees storage associated with an ECI recursion level

GETSYMB -- looks up the value of a variable symbol.

GETWB -- gets storage associated with an ECI recursion level

NEXTBRK -- scans forward in the ECI statment for a delimiter.

NEXTEL -- breaks out and evaluates the next expression in the
statement.

NEXTINT -- breaks out an expression required to be an integer.

NEXTLST -- breaks out the elements of a sublist.

NEXTSTR -- breaks out an expression that is a bounded-length character
string.

PUTSYMB -- gives a value to a variable symbol.

SETBRK -- manages alternate values for SYSLDELIM and SYSRDELIM.

SETQ -- determines whether a string is quoted.

SUBST -- recursively substitues values for variable-symbol names.

I

Controlling NSW Tools and Configurations under OS/HVT
December 1, 1980 -- Part II: FM/360

PAGE 34

TRIMB -- trims leading and trailing blanks from character strings.

UPCASE -- converts character strings to upper case.

% 0

J6 .!s.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 35

2.8. APPENDIX: FM/360 INITIALIZATION PARAMETERS

FM/360 decodes a set of initialization parameters from a configuration
data set which may optionally be supplied under file name (DDNAME)
PARMS. This data set is in the form of a PL/I GET DATA input stream.
The following data may be specified, where each name should be
qualified by the name "P.":

Name: Type: Default: Meaning:

GENERICNAME CHAR 'FOREMAN' FM/360's MSG generic name.

MSGTIMEOUT FIXED 60,000 MSG message timeout value,
in 0.01 seconds.

PCPTIMEOUT FIXED 600,000 PCP transaction timeout value,
in 0.01 seconds.

ENDTIMEOUT FIXED 60,000 Timeout value for waiting for
"endtool" following "toolhalted",
0.01 seconds.

GUARANTEETIMEOUT 6,000,000 Timeout value for waiting for
FIXED "guarantee".

GMT-ADJUSTMENT FIXED 8.0 Number of hours EARLIER than
Greenwich to assume the
local clock to be running.
The value may be signed
(for the Eastern hemisphere)
and may carry the fraction
".0" or ".5" (for half-
hour time zones).

VOLUME CHAR 'NSWPOl' Direct-access volume on which
to create data sets in the
tool work space.

CONFIRM-TERM BIT '0'B Switch to enable debugging
options following termination
of a tool program.

N%.NN0l-

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part II: FM/360

PAGE 36

REFERENCES

1) Schantz and Millstein, "The Foreman: Providing the Program
Execution Environment for the National Software Works". Document
CADD-7701-0111, Massachusetts Computer Associates, Wakefield,
Massachusetts, January 1, 1977.

2) Feinler and Postel (eds.), "Arpanet Protocol Handbook". Document
NIC-7104, Network Information Center, SRI International, Menlo
Park, California, January, 1978.

3) Ludlam, "PL/PCP -- An NSW Procedure-Call Protocol Package for
PL/I". UCLA/OAC document UCNSW-402, November 15, 1980.

4) Ludlam and Rivas, "PL/MSG -- An MSG Interface for PL/I". UCLA/OAC
document UCNSW-401, November 15, 1980.

5) Braden, "PLOXI -- A PL/I Interface to Exhange". UCLA/OAC document
UCNSW-407, November 15, 1980.

6) Braden, "PL/B8 -- A PL/I Interface Package for NSWB8". UCLA/OAC
document UCNSW-403, November 15, 1980.

7) DeLa Roca and Ludlam, "The UCLA Encapsulator Command Interpretor
System". UCLA/OAC document UCNSW-206, April 23, 1980.

8) Braden and Ludlam, "FP/360 -- The NSW MVT File Package". UCLA/OAC
document UCNSW-204, November 20, 1980.

9) IBM Corporation, "IBM System/360 Operating System Time Sharing
Option -- Command Language Reference". Document GC28-6732, 1973.

-I

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PART III

The UCLA ENCAPSULATOR COMMAND INTERPRETOR

This section is separately available
as UCLA document UCNSW-206

N N

Controlling NSW Tools and Configurations under OS/MvT
December 1, 1980 -- Part 1II: ECI

TABLE OF CONTENTS

3. PART III: THE ENCAPSULATOR COMMAND INTERPRETOR.........1
3.1. INTRODUCTION.....................1
3.2. LANGUAGE OVERVIEW...................3
3.3. LANGUAGE STRUCTURE................4
3.3. 1. INTERPRETIVE EXECUTION...................4
3.3.2. DATA TOKENS...................4
3.3.3. VARIABLE SYMBOLS................5
3.3.4. SYSTEM VARIABLE SYMBOLS..................6
3.3.5. EXPRESSIONS...................7
3.3.6. STRING MANIPULATION.........................8

* ~3.3.7. LISTS.....................8
3.3.8. ARRAYS....................8
3.3.9. STATEMENTS..................9
3.3.10. PROGRAMS....................9

e3.4. EXTERNAL ECI REPRESENTATIONS.............11
3.5. IMPLEMENTATION LIMITS..............13
3.6. ECI STATEMENT DEFINITIONS...............14

dr3.6.1. ALLOCATE STATEMENT...................14
3.6.2. CREATE STATEMENT.....................15)
3.6.3. DELETE STATEMENT..................16
3.6.4. ELIF STATEMENT.....................16
3.6.5. ELSE STATEMENT.......... 17
3.6.6. END STATEMENT..........................17

* ~3.6.7. EXECUTE STATEMENT.........................18
3.6.8. FREE STATEMENT.......................19
3.6.9. FREED STATEMENT.......................19
3.6.10. GET STATEMENT.................20

* ~3.6.11. IF STATEMENT........................22
3.6.12. INCLUDE STATEMENT..........................24
3.6.13. INDEX STATEMENT........................25
3.6.14. INTERPRET STATEMENT.......................25
3.6.15. MENU STATEMENT............................26
3.6.16. NOTE STATEMENT...........................26
3.6.17. PUT STATEMENT.....................27
3.6.18. QUERY STATEMENT.....................28
3.6.19. SET STATEMENT........................28
3.6.20. SETQ STATEMENT............................29
3.6.21. SETX STATEMENT...........................29
3.6.22. STOP STATEMENT.........................30
3.6.23. SUBSCRIPT STATEMENT.......................30
3.6.24. THEN STATEMENT........................31
3.6.25. WHILE STATEMENT..................32
3.6.26. COMMENT STATEMENT.............32
3.7. APPENDIX A -- ECI LANGUAGE GRAMMARS..........33
3.8. APPENDIX B -- COMMAND SUMMARY.................44

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

ILLUSTRATIONS

Figure 1. ECI Program Example....................21
Figure 2. Expected Forms of Select Control Structures. 23

R .0 f ORj, P.0p

% 0 40'

L-01 W~v -'

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 1

3. PART III: THE ENCAPSULATOR COMMAND INTERPRETOR

3.1. INTRODUCTION

The UCLA Encapsulator Command Interpretor (ECI) is an interpretor for
a primitive language used by NSW Tool installers to specify the
interactions between the tool Foreman and the tool user. The ECI
language allows the tool installer to query the tool user for
information, using menus or simple questions. Using this information,
the installer can construct further ECI statements which, when
interpreted, can direct the aquisition and delivery of NSW files that
are to be used by the tool execution instance.

The effect of the ECI program is to provide a useable interface among
the NSW, an NSW user, and an unmodified, non-NSW tool that has been
encapsulated within NSW. Because true tool encapsulation, as
envisioned by the designers of NSW, will probably never be feasible
under an unmodified IBM operating system, the UCIA NSW implementation 0
simulates it by providing comprehensive setup and cleanup of the
tool's execution environment. Between setup and cleanup, the tool
runs, for all practical purposes, in native mode. The vehicle for
specifying this setup and cleanup is the ECI language.

In this document, we use the term "programmer" to refer to the person
writing and installing an ECI program. We use the term "user" to
refer to the person who invokes the NSW tool with which the ECI
program is associated. Thus it is correct to say that the ECI
programmer writes a program which communicates with the tool user.

Despite its orientation toward encapsulated tools, the ECI has been
installed as an integral part of the UCLA NSW Foreman, and it is
available for installing any tool, whether encapsulated or not.

Figure 1 shows a simple and fairly self-explanatory example of an ECI
program.

J

N N % N

~ ~ ~S

0I
Controlling NSW Tools and Configurations under OS/MVT

December 1, 1980 -- Part III: ECI
PAGE 2

Figure 1. ECI Program Example

* EC I PROGRAM TO CONTROL A TOOL *
* TO COMPRESS A LIBRARY *

SET ABORT , 0
SET CREATERC , 1
WHILE [CREATERC] = 0

SET FILESPEC ,

WHILE [FILESPEC] = '
QUERY QUERYRC , FILESPEC

"<filespec><cr> or ?<cr>:
("Enter the NSW file specification of the -

library to be compressed," P
or <control-C> to abort.")

IF [QUERYRC] < 0
THEN

NOTE "Aborting tool session"
SET CREATERC , 0
SET ABORT , 1
SET FILESPEC ,

ELIF [FILESPEC] = '
THEN

GET CREATERC , NSWFILENAME , LOCALNAME ,

QNSWCOPY , MEMBER , [FILESPEC] , 1 , 0
IF (CREATERC] -= 0

THEN
NOTE

"unable to locate library [filespec]"
END

END
END

END
IF [LOCALNAME]

THEN
IF [ABORT] = 0

THEN
EXEC RC , COMP [LOCALNAME]

END
IF [QNSWCOPY] = 0

THEN
DELETE , [LOCALNAME]

ELSE

FREED , [LOCALNAME]
END

END

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 3

3.2. LANGUAGE OVERVIEW

ECI programs are associated with tools through the optional "Tool
Dependent Parameter List" (TPDL) of the Tool Descriptor in the Works
Manager's data base. The TDPL may contain an entire ECI program;
however, it is more common for it to refer, via an "INCLUDE"
statement, to a program stored on the tool's host.

The ECI will interpret the following basic command statements:

ALLOCATE an existing data set to an IBM OS file.
CREATE an empty local data set.
DELETE a local data set.
EXECUTE a TSO command.
FREE a bound IBM OS file name.
FREED a bound local data set name.
GET an NSW file into a local data set. -
INCLUDE an ECI program from a local data set.
INDEX of a string within a list.
INTERPRET dynamically entered ECI statements.
MENU display and selection.
NOTE information on the user's terminal.
PUT a local data set into the NSW file space.
QUERY the user for variable information.
SET a symbol equal to value of an expression.
SETQ a flag with by whether a string is quoted.
SETX a symbol with a corrected data set name.
STOP interpretation of an ECI program.
SUBSCRIPT a list.

Plus the following control command statement groups for program
structuring:

WHILE / END for iteration.
IF / THEN / ELIF / ELSE / END for selection.
END for program and structure closure.

fi

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 4

3.3. LANGUAGE STRUCTURE

As a programming system the ECI language was designed with simplicity
and modularity in mind: simplicity in the syntax of the language, and
modularity in terms of easy extendability of the language at a later
date.

In comparison with traditional generalized programming languages, the
ECI language consists of data literals, string variables, string
lists, generalized expressions, an "include" facility, and structured
programming "select" and "iteration" program structures (there is no
GO TO statement or equivalent). The syntax and semantics of all these
elements are fully defined and illustrated in appendices of this
document. The following sections are only an introductory overview
for the uninitiated.

3.3.1. INTERPRETIVE EXECUTION

ECI programs are meant to be interpreted, that is, checked and
executed dynamically, one statement at a time. As a rule, the
programs are quite short, are vritten by "expert" tool maintenance
personnel, and are stored in and executed from a quality-controlled
data base. In such an environment, the drawbacks of interpreting
are minimal, and the characteristics of interpretive systems can be
exploited to yield a string-oriented programming system which,
though primitive, is quite powerful.

The fact that the ECI is not intended for use by the casual
programmer has led to an implementation that assumes that all
programs are debugged. It is both tolerant and intolerant of
errors: most constructs encountered will be interpreted in some
way, whether meaningful or not, but those which cannot be
interpreted at all will cause program interpretation to be aborted
without comment.

3.3.2. DATA TOKENS

At its most basic level the ECI language operates on character data
tokens. No other data token is defined in the language. Any
literal string of arbitrary characters is an ECI data token.
Matched quotes, either single or double, can be used to cause blanks
to be a part of such a string. Internal quotes are represented via
the usual doubling convention, so that the value of a character data
token is the literal string itself, minus possible surrounding
quotes (of either type, so long as they match), and with all
enclosed dual occurrences of quotes (of the type bracketing the
string) collapsed to single occurrences.

N

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 5

In those contexts requiring arithmetic values, strings are coerced
to arithmetic values, with the value "0" being used as a last
resort. Where a boolean value is required, the arithmetic value "0"

becomes the boolean value FALSE, and any other arithmetic value
becomes TRUE.

There are some rare cases where an ECI statement behaves differently
when given numeric input than when given a non-numeric string (see
the "<gft or attrno> argument of the GET and PUT statements as
examples). In order to talk about such cases, the ECI defines the
"numeric validity" and the "boolean validity" of a string as TRUE
when the string requires no coercion to represent a valid numeric or
boolean value.

In normal programming usage the above distinctions are of no concern
to the programmer; most of the time the right thing happens.
However, the ECI programmer should always be aware that the internal
representation of all ECI data values is the character string. Due
to the coercion conventions the ECI interpreter will usually run
happily even when given the most absurd sorts of expressions. It is
assumed that the programmer will limit himself to vaguely meaningful
statements.

3.3.3. VARIABLE SYMBOLS

ECI variables are implemented as a general character substitution
mechanism, much like those of macro assembler languages. The
construct

[string]

denotes the character value of a variable whose name is given by the
literal string enclosed in the brackets. This means that the ECI
interpreter implements a symbol table in which both name and value
spaces are dynamically assignable by the programmer. Any string may
appear within brackets -- no explicit declaration is required -- but
its character value will be a null string until something else is
explicitly assigned it. Arbitrary nesting of brackets is allowed,
and the clever programmer can use this feature to advantage (see the
section entitled "ARRAYS").

Variable symbols may occur anywhere within an ECI statement. Square
brackets are permanently reserved for this purpose, and are
therefore ferreted out in any context, even within quoted strings,
to trigger symbol table substitution. Brackets are rarely used in
IBM systems, so that reserving them for this purpose is not usually
an inconvenience. Should it be necessary for your ECI program to
treat brackets as data characters, see the definitions of SYSLDELIM
and SYSRDELIM in the section entitled "System Variable Symbols."

e . e. %

r•~ 1Wr uT1rWM1~~1 r
Controlling NoW Tools and Configurations under OS/MVT

December 1, 1980 -- Part III: ECI
PAGE 6

A string within brackets is considered to be free of the effects of
alphabetic case, so that "[alpha]", "[ALPHA]", and "[Alpha]" are all
the same variable symbol. Of course, case is always preserved
within the VALUE of a variable symbol.

3.3.4. SYSTEM VARIABLE SYMBOLS

Certain symbol table variables, designated "system variable
symbols," have non-null initial values. All these symbols have
names beginning with "SYS" and their values represent both program
and environment parameters. Some of these variables are meant to be
read-only, even though such usage is not enforced by the
interpreter, while the other variables are intended to be set by the
programmer to specify ECI trace modes, etc. The system variable
symbols currently defined are:

SYSLDELIM is a read-only system variable yielding as its value the
left bracket symbol used to denote symbol table value
substitution. A character introduced into the ECI program
through this variable symbol will NOT trigger variable symbol
substitution.

SYSRDELIM is a read-only system variable yielding as its value the
right bracket symbol used to denote symbol table value
substitution. A character introduced into the ECI program
through this variable symbol will NOT trigger variable symbol
substitution.

SYSDATE is a read-only system variable yielding as its value the
date in the form "mm/dd/yy". This represents the date that
processing of the ECI main program began, and it does not vary
during the execution of an ECI program and its subprograms.

SYSDATEX is a read-only system variable yielding as its value the
same date as SYSDATE, but in the form "mmddyy .

SYSTIME is a read-only system variable yielding as its value the
time in the form "hh/mm/ss". This represents the time that
processing of the ECI main program began, and it does not vary
during the execution of an ECI program and its subprograms.

SYSTIMEX is a read-only system variable yielding as its value the
same time as SYSTIME, but in the form "hhmmss".

SYSACCT is a read-only system variable yielding as its value the
account name under which the ECI is running.

SYSUID is a read-only system variable yielding as its value the TSO
C "userid" under which the ECI is running.

1 '&i'% % -'t ' t'% tt % ' ' ' " ' ' ' € ""i. ,, T , .,'" ""',, ,2,, ' ' '

-w vw wv-v vv wv v-u1WIW'% - i7J '

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 7

SYSACCT is a read-only system variable yielding as its value the
directory name under which the ECI is running. This the
prefix that is assumed for non-quoted local data set names.

SYSCNT is a read/write system variable yielding as its value the
current watchdog loop iteration limit. No iteration control
structure is allowed to iterate beyond this limit. Its
initial value is 100.

SYSECHO is a read/write system variable yielding as its value the
current setting of the "echo trace" flag: "ON" for enabled,
"OFF" for disabled. Its initial value is "OFF". When
enabled, the echo trace produces a trace, on the currently
defined journal file, of every ECI statement actually
executed, with all symbol substitutions shown. The trace is a
useful means to debug programs.

SYSTRACE is a read/write system variable yielding as its value the
current value of the "system trace flag": "ON" for enabled,
"OFF" for disabled. Its initial value is "OFF". When
enabled, the system trace produces a trace, on the currently
defined journal file, of every symbol table change, of every
statement executed, and of the interpretor control blocks at
each time of execution. This trace is intended to support ECI
maintenance. It should be used by programmers when suspecting
problems with the interpreter itself.

3.3.5. EXPRESSIONS

By a specific design decision, every parameter of every ECI
statement is a generalized expression which is evaluated every time
the interpreter executes the statement.

Expressions in the ECI language are implemented in the most general
sense. The usual arithmetic, relational, and logical operators are
supported with their traditional evaluating priorities. As usual
too, parentheses may be used to specify associativity. ECI
expressions operate on character data tokens, coerced to arithmetic
or boolean velues when necessary. Symbol table value substitution
is done in such a way that the original syntax of the expression is
never altered. The result of expression evaluation is converted to
a character string and substituted into the original ECI statement.

The ECI programmer should remember that the arithmetic coercion
conventions of the ECI make almost any expression legitimate. For
instance,

APPLES + 1ORANGE

N%

-I

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 8

is legitimate and has the value 0+1 = 1.

3.3.6. STRING MANIPULATION

There are no operators for breaking strings apart, since the
specialized ECI application does not yet require them; however,
statements implementing substring and scan operations can easily be
added.

Concatenation, on the other hand, is a needed capability, and is
supported implicitly, rather than through an explicit operator.
Runs of quoted and non-quoted strings, with or without intervening
blanks, yield in effect a single data token. In the evaluation of
expressions, two neighboring expressions with no recognizable
operator between them are evaluated separately and their character
results then concatenated.

3.3.7. LISTS

An important construct in the ECI language is the list structure,
consisting of a sequence of expressions or literal strings separated
by commas, and sometimes bracketed by parentheses. The comma is
another reserved symbol in the ECI language; however, unlike
brackets, commas may be hidden within quotes or parentheses. The
construct

la,b',c

denotes a two element list separated by a level-O comma, and

(a,b),c

is a list consisting of one sublist element and an atomic element.

The rules for breaking out items of a sublist are the same as for a

top-level list. Leading and trailing blanks are not significant
unless within quotes, and the outer level of quotes is not a part of
the item's value. The parentheses surrounding a sublist are
discarded.

Lists are primarily used as arguments to ECI statements. The only
mechanisms for manipulating lists are the INDEX and SUBSCRIPT
statements.

3.3.8. ARRAYS

Arrays are not explicitly supported by the ECI language; however,

they are easily simulated by a clever programmer. Because arbitrary
nesting of brackets is allowed, strings such as

N Ni

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 9

[VECTOR[N]]

[MATRIX[N]X[M]]

can be set and used. Well nested variable symbols are substituted
from the inside out. This technique could be used to build more
complex data aggregates.

3.3.9. STATEMENTS

ECI program statement structure is utter simplicity: each statement
consists of a command field or verb and a list of zero or more
parameters separated by level-0 commas. Any parameter may be a
sublist, in which case it must be delimited by parentheses.

The basic cycle of the interpreter consists in stepping thru each of
the ECI statements, invoking the named command processor, and
passing to it the unevaluated parameter list as an argument. The
command processor evaluates each parameter expression, as needed to
perform its task, and returns control to the interpreter. For the
"control statements," the interpreter also keeps status and control
information that governs nonsequential flow of control.

3.3.10. PROGRAMS

Program structures are also quite simple. There are three such
structures: programs, select structures, and iteration structures.

A program is nothing more than a collection of ECI statements
delimited in some way external to the ECI syntax. The TDPL datum of
the FM-BEGINTOOL procedure call is such a program. Other programs
are local data sets or members of local libraries. A special form
of program can be entered from the tool user's keyboard in response
to an INTERPRET command. The external representation of programs is
defined in the section entitled EXTERNAL ECI REPRESENTATIONS.

One program may invoke another via the INCLUDE or INTERPRET
statements. Since the second program is run under the symbol table - S
space of the first program, these mechanisms constitute a primitive
subroutine capability, with communication between programs being
possible via shared symbol table variables. However, these
mechanisms may be time-consuming, so they should not be used
carelessly in heavily iterated parts of a program. An ECI program
that was not invoked via INCLUDE or INTERPRET is called an ECI main
program; all others are called subprograms. All programs stored in
TDPL's are main programs.

The select control structure specifies, in its simplest form, the
usual "IF" conditional construct, and in its most general form, the
"CASE" construct of other languages. Similarly, the iteration
control structure emulates the WHILE construct of other languages.

'I'. A

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 10

Both control structures are explicitly closed by an END statement.
Notice that while these control structures span multiple ECI
statements, the ECI interpreter operates on only one statement at a
time, and is not sensitive to anomalous groupings of statements.
Nonsensical structures may generate unexpected results, including
abnormal termination of the ECI program. As already mentioned, the
interpretor is rather permissive and relies on normal usage by an
expert programmer.

..

. . M 'M YU

Controlling NSW Tools and Configurations under OS/IVT
December 1, 1980 -- Part III: ECI

PAGE 11

3.4. EXTERNAL ECI REPRESENTATIONS

There are three ways to enter an ECI program into NSW: through the
Tool dependent Parameter List of the Tool Descriptor in the Works
Manager Data Base; through a local data set to be read via the INCLUDE
statement; and directly into the NSW Front End when an INTERPRET
statement is processed. The statement syntax is the same in all
cases, but the representation on each entry medium differs according
to the need for a statement continuation convention.

The TDPL consists of a list of character strings of arbitrary length;
therefore, it is not necessary to continue ECI commands stored there.
Any continuation convention is thus defined by the program that
creates the Tool Descriptor. Works Manager Tool Descriptors are
created by utilities supplied and documented by the Works Manager
developers. The reader is referred to Works Manager documentation for
more information on using these tools.

0
A local data set to contain ECI commands can be sequential or
partitioned, and can have any IBM OS record format that does not
include "carriage control" codes. The number of data characters per
line is limited to 255, so the OS LRECL must not exceed 259 for
format-V records, or 255 for other formats. For line printer
compatibility, it is usually desirable to use a much shorter line
length, so a mapping of input records into ECI statement lines is
defined. This mapping is independent of the ECI statement syntax.

* An input line contains a "significant part" consisting of the line
less all leading and trailing blanks. A line with a null
significant part contributes nothing to the text of an ECI command.

* In the simple case, an ECI statement consists of the significant
part of an input line. However, if that results in a statement
terminated by a hyphen, , a continued statement is indicated.

* Whenever a significant part is found to terminate with a hyphen, the
hyphen is deleted, and the significant part of the following input
line is concatenated in its place. This continuation process is
applied recursively until either: 1) a line is found with a
significant part not terminating with a hyphen (this includes a null
line); or 2) the end of the data set is reached (the final hyphen is
deleted anyway).

* Notice that blanks before a hyphen are part of the significant part

of a line, but that leading blanks of the continuation line are not.
Notice too, that a significant part, once having had a hyphen
deleted, is never checked for a second hyphen. In a case where a

statement absolutely must terminate with a significant hyphen, use
two hyphens followed by a null line.

N 'V

rP

'I. ~ S

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 12

When entering an ECI statement through an NSW Front End, the statement
is terminated by a keyed carriage return. All Front Ends as of this
writing are full duplex, and a long string is automatically placed on
successive lines of the terminal display medium, without the need to
key carriage returns. Continution characters are not defined in this
case, and should not be used. Notice that this form of statement
entry is intended for tool development personnel, and will be used
infrequently.

f.

PU -6VU

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 13

3.5. IMPLEMENTATION LIMITS

The primary objectives in the design of the ECI language were
simplicity and ease of use by experts. The design of the ECI run time
environment stressed simplicity and minimal error checking. A number
of automatic data coercions and defaults were implemented to improve
error tolerance, and there is minimal error checking. Consequently
most ECI programs will execute when most other languages would give
up.

A few physical limits must be observed, but they will be of
consequence only in the most extreme cases. Terminal input, statement
parameters, and expression results will be truncated at 256
characters. ECI program lines and ECI lists will be truncated at 1024
characters. Truncation never results in any error message.

There are no built-in limits on the maximun number of parameters per
ECI statement, size of program units, maximum nesting of control
structures, etc. These are bounded by the amount of storage available
to the ECI -- the program runs until its internal resources are
exhausted and then gives up ungracefully.

The majority of the ECI's dynamic storage is used to contain the ECI
programs and the symbol table. TDPL programs are stored as they are
received. Included programs are stored as tightly packed as is
practical. The symbol table is primitively implemented, and lacks any
garbage collection mechanism; however, it is not expected that symbol
table activity will usually be great enough to require one.

-4

V V V[

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 14

3.6. ECI STATEMENT DEFINITIONS

This section consists of an alphabetic list of the ECI statements.
For each one, the parameter syntax is shown and the meaning of each
parameter is explained. By convention, any outputs produced by a
statement are the first parameters, with input arguments following
Note that when a parameter is described as "the name of a variable
symbol" that name is NOT enclosed in brackets. A name in brackets
represents the VALUE of a variable symbol, not its name.

Data set names and patterns can be quoted or non-quoted; however, a
quoted literal string should be further enclosed in double quotes to
ensure that the single quotes remain a part of the parameter value.

3.6.1. ALLOCATE STATEMENT

The ALLOCATE elementary statement binds an existing data set to an
IBM OS file name (DDNAME). The syntax is:

ALLOCATE <retcode>,<ddname>,<dsname>,<member name>
<share flag>,<check>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0 --> successful allocation
8 --> local data set can't be located

12 --> insufficient resources
16 --> any other error

<ddname> is the IBM OS "DDNAME"; that is, the name of the file to be
bound.

<dsname> is the local name of the data set to be bound to the file.

<member name> is the name of a member of the data set, if it is a
library, and if and only a member is to be bound. In other
cases, it is null or blank.

<share flag> is a boolean. It is 1 if the allocation can be shared
with other concurrent shared users, and 0 if the allocation
must be for exclusive control.

<check> is a boolean. If it is 1, and if allocation is to a member
name, then allocation will not succeed unless the member
already exists. If it is 0, successful allocation of a
library member only requires that the library exist (this is
sufficient if the member is about to be created).

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 15

3.6.2. CREATE STATEMENT

The elementary statement CREATE builds a new data set, usually in
the local workspace, and remembers its name. The attributes of the
data set are derived from a specified Global File Type name. The
syntax is:

CREATE <retcode>,<dsname>,<dsname pattern>,<gft>,
<filesize>,<growth>,<directory size>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0 --> successful execution
4 --> local data set name already exists

12 --> insufficient resources
16 --> any other error

<dsname> is the name of a variable symbol to be assigned the value
of the local data set name.

<dsname pattern> is the local data set name to be supplied, except
that it may contain up to 7 occurrences of the "wild
character" "". This character will be replaced by any
alphanumeric character that will result in a unique name.
Note that it is not a pure alphabetic character, so it should
not be used as the first character, or immediately following a

<gft> is an NSW Global File Type (GFT) name that represents the data
set attributes. It must be native to the 360 family; that is,
it must begin with "360-".

<filesize> is an integer stating the initial data set size in
kilobits. If it is not present, a default associated with the
GFT will be used. -

<growth> is an integer stating the data set's growth increment in
kilobits. If it is not present, a default associated with the
GFT will be used.

<directory size> is an integer stating the number of directory
blocks to be reserved for a library. If it is not present,
the data set will be sequential. If it is present, the data
set will be a library.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 16

3.6.3. DELETE STATEMENT

The elementary statement DELETE simulates the Foreman's DELETE LOCAL
primitive by destroying a data set, usually one created by the
CREATE statement. The syntax is:

DELETE <retcode>,<dsname>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0 --> successful deletion
8--> unable to locate data set
12--> insufficient resources
16--> any other error

<dsname> is the local data set name to be deleted.

3.6.4. ELIF STATEMENT

The control statement ELIF opens up a conditionally executable group
within a select control structure. The syntax is:

ELIF <expression>

<expression> has the same function as the same parameter of the IF
statement, to which this statement must be subordinate. It
determines whether the ELIF group is to be executed. However,
an ELIF group is never executed if any previous THEN, ELIF, or
ELSE group has already been executed within the containing
control structure. If the ELIF group is executed, then the
flow of control is directed to the statement immediately
following the END statement of the select control structure.

P m V

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 17

3.6.5. ELSE STATEMENT

The control statement ELSE opens up an unconditionally executable

group within a select control structure. The syntax is:

ELSE

An ELSE group is not executed if any previous THEN, ELIF, or ELSE
group has already been executed within the containing control
structure. If the ELSE group is executed, then the flow of control
proceeds to the statement immediately following the END statement of
the select control structure.

3.6.6. END STATEMENT

The END control statement closes program structures. The syntax is:

END

Both select and iteration control structures are closed by END's
matching the corresponding IF's and WHILE's opening those
structures.

Programs are normally bracketed by their physical boundaries, as by
beginning and end of file; however, a program introduced by the
INTERPRET statement has no such physical boundaries, since it is
extracted from the user's terminal input stream. In this case, that
program is closed by an END statement which can be considered to
match an implicit opening delimiter which is the position of the
terminal input stream at the point of execution of the INTERPRET
statement. For uniformity, the ECI allows the closing of any
program with an END statement, whether it is from the terminal
stream or not.

It is an ECI requirement that control structures be well nested.
Thus a select or iteration structure cannot be opened in a
subprogram and closed in its calling program. For this reason, when
a program ends with unclosed contained control structures, the ECI
will supply enough implicit END statements to make the program -

well-formed.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 18

3.6.7. EXECUTE STATEMENT

The elementary statement EXECUTE invokes a given program as a TSO
command processor. Normally, this will be the tool program itself;
however, the command may be used any number of times, and may call
any TSO number of TSO command processors. The syntax is:

EXECUTE <retcode>,<command>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0 --> program terminated under its own control
12 --> program terminated abnormally

<command> is any character string. Unless it is null, it should be
formatted as a TSO command; that is, it should begin with a
TSO command verb delimited by blanks and/or the field
boundaries. The command is executed exactly as though it were
entered outside the NSW system. Its terminal interactions
will be directed to the NSW Front End, and will not be
available to the ECI.

A

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 19

3.6.8. FREE STATEMENT

The elementary statement FREE unbinds an existing IBM OS file name
(DDNAME) from any local data set name to which it is currently
bound. The syntax is:

FREE <retcode>,<ddname>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0 --> successful unbinding
8 --> unable to locate ddname

12 --> insufficient resources
16 --> any other error

<ddname> is the IBM OS file name (DDNAME) to be FREE'd.

3.6.9. FREED STATEMENT

The elementary statement FREED unbinds an existing data set from any
IBM OS file names (DDNAME's) to which it is currently bound. The
syntax is:

FREED <retcode>,<dsname>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0 --> successful unbinding
8 --> unable to locate dsname

12 --> insufficient resources

16 --> any other error

<dsname> is a local data set name to be FREED'd.

Lou-I

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 20

SJ

3.6.10. GET STATEMENT

The elementary statement GET simulates the Foreman's GET primitive
by calling WM-GET. It transforms an NSW filename into a local data
set name and remembers it. The syntax is:

GET <retcode>,<nsw file name>,<dsname>,
<altered filespec>,<qnswcopy>,<member name>,
<filespec>,<gft or attrno>,<qset>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0--> successful execution
4 -- > file was not gotten

<nsw file name> is the name of a variable symbol to receive the
resolved NSW file name.

<dsname> is the name of a variable symbol to be assigned the local
data set name.

<altered filespec> is the name of a variable symbol to be assigned
the filespec as altered by the user in any HELP calls. If no
filespec alteration is done, this variable is assigned a null
value.

<qnswcopy> is the name of a variable symbol to be assigned the value
"0" if a tool copy is made, or the value "" if an NSW copy
was allocated directly.

<member name> is the name of a variable symbol to be assigned the
name of a member, if the GET resulted in the allocation of a
member of an NSW library file. Otherwise, this variable is
set to a null value. (At this writing, NSW does not yet
support member allocation, and this variable is always set to
null.)

<filespec> is the NSW "filespec", an abbreviated form of the name of
the existing NSW file to be accessed.

<gft or attrno> is interpreted in either of two ways. If its
numeric validity is TRUE, then it is a small integer
designating an index into the Works Manager's Tool
Descriptor's file type vector. When so applied, it yields the
Global File Type (GFT) list describing the desired file copy.
But if its numeric validity is FALSE, then it is a character
string representing a single GFT directly, and so it must
begin with "360-". (At this writing, only integers are
supported.)

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 21

<qset> specifies whether the Works Manager is to set the file
semaphore on the NSW file being gotten. Boolean value TRUE
requests such setting, while boolean value FALSE requests that
it not be set.

0

I

Controlling NSW Tools and Configurations under OS/HVT
December 1, 1980 -- Part III: ECI

PAGE 22

3.6.11. IF STATEHENT

The control statement IF opens up a "select control structure"
consisting of one or more conditional (THEN, ELIF) and/or
unconditional (ELSE) select control groups, and one closure bracket
(END). The interpreter implements minimal program structure
checking and thus anomalies in the order of these control statements
may cause unpredictable results. The expected variations of the
select control structure are illustrated in figure 2 (Note that THEN
is a null statement, which does nothing but improve the readability
of ECI programs). Within each select group, other control
structures may be nested to a level limited only by the main storage
available to the ECI interpreter. The syntax is:

IF <expression>

<expression> is an arbitrary expression whose boolean value, if
TRUE, triggers execution of the control structure THEN group.
If the value is false, flow of control proceeds to the next
ELIF, ELSE, or END statement.

The general logic for flow of control within a select control
tructure is as follows:

1. If the IF expression yields a boolean value TRUE than the
group immediately following the IF statement is executed, and
then control skips to the statement following the END
statement.

2. If the IF expression yields a boolean value FALSE then contii
skips to the next ELIF, ELSE, or END statement that is a pait
of this select control structure.

3. If control reaches an ELIF statement, then its expression is
evaluated. If it yields a boolean value TRUE, then the ELIF
group is executed, and control skips to the statement
following the END statement.

4. If control reaches an ELSE statement, then the ELSE group is
executed unconditionaly, and control skips to the statement
following the END statement.

5. If all conditional expressions on the IF and on any ELIF

statements are false, and if there is no ELSE statement, then
control will procee$ past the END statement with no statements
in the control structure having been executed.

6. When control reaches the END statement, whether by skipping to

that point or by executing the last statement group in the
structure, control proceeds by executing the statement
following the END statement.

4-%

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 23

Figure 2. Expected Forms of Select Control Structures.

IF <expression>
THEN

<THEN statement group>
END

IF <expression>
THEN

<THEN statement group>
ELSE

<ELSE statement group>
END

S

IF <expression>
THEN

<THEN statement group>
ELIF <expression>

THEN -- In
<ELIF statement group> "-I units

ELSE
<ELSE statement group>

END

IF <expression>
THEN

<THEN statement group>
ELIF <expression>

THEN -- In
<ELIF statement group> -- [units

END

IhMAK Y Al 0

-~~~~~~~~~~~~~~~~ nSn l a Sn n r li f a.fl l aw t -aa - - . -. MR U1PrVJU 'U IrflVWVVV"

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 24

3.6.12. INCLUDE STATEMENT

The elementary statement INCLUDE causes the ECI interpreter to
retrieve and execute an ECI program from a local dataset. The
included program is logically terminated by an end-of-file or by an
unmatched END statement. Execution of the INCLUDE statement does
not complete until the entire included program has completed. Both
programs use the same ECI variable symbol table space so values may
be passed in either direction via variable symbols. If the included
program is aborted, execution of the including program is not
affected directly; however, the termination status of the included
program is reported back to the includer. The syntax is:

INCLUDE <retcode>,<filename>,<member name>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0 --> successful execution of program
8 --> program was aborted during execution

16 --> program could not be located
24 --> any other error

<filename> is an IBM OS DDNAME to which the data set is already
allocated. If it is null, standard filename "ECILIB" will be
used.

<filename> is the name of a member to be retrieved from the library.
If it is null, then <file> must be given, and must be
allocated to a sequential data set.

4I

C|

S.

4..

-~ A ~ -a a * * . a. *

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 25

3.6.13. INDEX STATEMENT

The elementary statement INDEX searches a list of items for a match
on an argument string, and returns a small integer (zero origin)
indicating which element was matched. Comparison is without regard
to alphabetic case. The syntax is:

INDEX <index>,<argument>,<list>

<index> is the name of.a variable symbol to receive the returned
integer. The list is considered to be zero origin. A value
of -1 is returned if no match is found.

<argument> is a character string to be matched against the list
parameter.

<list> is a parenthesized list of potential matches on the value of
<argument>.

3.6.14. INTERPRET STATEMENT

The elementary statement INTERPRET is intended for use by tool
development personnel in debugging tool implementations. It allows
dynamic specification of an entire ECI statement sequence; however,
this sequence is interpreted as it is entered, and it is not saved.
Therefore, execution of all the control statements IF, WHILE, THEN,
ELSE, and ELIF is disabled. The syntax is:

INTERPRET

On recognizing this command, the ECI interpreter will switch flow of
control from the current executing ECI program to the user's
terminal. It will prompt for, accept and execute elementary
statements entered at the user's terminal until an END statement or
an attention interruption is encountered. Then flow of control is
switched back to the executing program at the statement immediately
following the INTERPRET statement just executed.

Notice that the ECI's intolerance for errors is not mitigated
bccause the statements entered due to INTERPRET are from the user's
terminal. However, an error in a user-entered statement will not
abort the ECI program, since the user will have the chance to
reenter the statement correctly.

0I
Controlling NSW Tools and Configurations under OS/MVT

December 1, 1980 -- Part III: ECI
PAGE 26

3.6.15. MENU STATEMENT

The elementary statement MENU requests input from the user, and
accepts from him a value from a given menu. Help information can be
provided. The statement returns both the input string and a small
integer designating its zero-origin index in the menu. The syntax
is:

MENU <index>,<input>,<prompt>,<menu>,<help>

<index> is the name of a variable symbol to receive the returned
integer. The list is considered to be zero origin, and a
value of -1 is returned if the user aborts the statement via
an attention without providing a match.

<input> is the name of a variable symbol to receive the string input
by the user. Notice that it may not be an exact match of any
menu item as abbreviations, unambiguous or not, are accepted,
and comparison is without regard to alphabetic case. The
matching algorithm works very simply -- it stops searching at
the first successful match -- therefore the order of the items
in the menu list is important if ambiguous abbreviations are
possible.

<prompt> is a character string written to the user's terminal to
prompt him for input. Normally, this string should include or
imply the menu values.

<menu> is a parenthesized list of potential matches for the user's
input string. This list is for internal matching by the MENU
processor, and should not be formatted for the user.

<help> is a parenthesized list of lines of HELP output. The entire
list is written to the terminal if the user enters a "?" in
response to the first prompt.

L

3.6.16. NOTE STATEMENT

The elementary statement NOTE merely types information on the user's
terminal. The syntax is:

NOTE <text>

<text> is a character string to be ouput on the user's terminal.

C,

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 27

3.6.17. PUT STATEMENT

The elementary statement PUT simulates the Foreman's PUT primitive
by calling WM-DELIVER and remembering the resulting NSW file name.
The syntax is:

PUT <retcode>,<nsw file name>,<new member name>,
<new member version>,<dsname>,<entry name>,
<gft or attrno>,<qreplace>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0 --> successful delivery
4 --> Works manager won't accept data set
8 --> Local data set can't be located

12 --> Insufficient resources
16 --> Any other error o

<nsw file name> is the name of a variable symbol to be assigned the
value of the NSW file name.

<new member name> is the name of a variable symbol to be assigned
the member name as altered by disambiguation. (At this
writing, NSW does not yet support member names, and this
string will always be null.)

<new member version> is the name of a variable symbol to be assigned
the version number of a member in a library. (At this
writing, NSW does not yet support member names, and this
string will always be null.)

<dsname> is the local name of the data set to be delivered.

<entry name> is the NSW "entry name", an abbreviated form of the
name of the new NSW file to be created.

<gft or attrno> is interpreted in one of two ways. If its numeric
validity is TRUE, then it is a small integer designating an
index into the Works Manager's Tool Descriptor's file type
vector. When so applied, it yields the Global File Type (GFT)
describing the file being delivered. If the numeric validity
of the expression value is FALSE, then the value represents a
character string which is a GFT directly, so it must begin
with "360-". (At this writing, only integers are supported.)

<qreplace> specifies whether the Works Manager is to replace any
existing NSW file of the same name. I requests replacement,
and 0 requests further disambiguation.

A.%
.~ aa.2 a~ ..a M

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 28

3.6.18. QUERY STATEMENT

The elementary statement QUERY requests input from the user, and

saves his reply. Help information can be provided. The syntax is:

QUERY <retcode>,<input>,<prompt>,<help>

<retcode> is the name of the variable symbol to receive a return
code summarizing the results of statement execution. Defined
values are:

0 --> a reply was returned
4 --> user aborted with attention

<input> is the name of a variable symbol to be assigned the
character string input by the user.

<prompt> is a string message with which the user is to be prompted
for input.

<help> is a parenthesized list of lines of HELP output. The entire
list is written to the terminal if the user enters a "?" in
response to the first prompt.

3.6.19. SET STATEMENT

The elementary statement SET assigns a literal or calculated value
to a variable symbol. The syntax is:

SET <symbol>,<value expression>

<symbol> is the name of a variable symbol to receive the value of
the parameter expression.

<value expression> is an arbitrary expression whose value is
assigned to the given ECI variable.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1983 -- Part III: ECI

PAGE 29

3.6.20. SETQ STATEMENT

The elementary statement SETQ returns a boolean TRUE if its argument
is a quoted string, or a FALSE if it is not. The syntax is:

SETQ <symbol>,<test string>

<symbol> is the name of a variable symbol to be set to 1 if <test
string> is a properly quoted string, and to 0 otherwise.

<test string> is a character string to be tested as to whether it is
surrounded by matching quote marks (either single or double).

3.6.21. SETX STATEMENT

The elementary statement SETX converts a string containing a quoted
partitioned data set name from the form in which it is likely to be
generated by string concatenation to that which TSO requirep. If
the input string is not of the form expected, the output will be an
unchanged string. For example, the string:

'alpha. beta' (member)

must be converted to

'alpha.beta(member)'

before it can be processed. The syntax is:

SETX <symbol>,<dsname>

<symbol> is the name of a variable symbol to receive as its value
the quoted partitioned data set name in corrected form. If no
correction takes place then it is set to the same value as
<dsname>.

<dsname> is the data set name to be checked and converted.

)

j

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 30

3.6.22. STOP STATEMENT

The elementary statement STOP halts execution of the ECI program.
Notice that STOP is not usually used for normal program termination,
since program execution terminates normally at the logical end of
the program. The syntax is:

STOP <abort expression>

<abort expression> indicates whether the STOP is to be considered
normal or abnormal for the purposes of reporting back to any
INCLUDE command which may be executing this ECI program. If
the boolean value of <abort expression> is TRUE, the STOP is
considered an abort. Otherwise, it is considered a normal
termination.

3.6.23. SUBSCRIPT STATEMENT

The elementary statement SUBSCRIPT is the inverse of INDEX. It
accepts a list and a small integer, and returns the list element
corresponding to the integer. List indexing is zero-origin. The
syntax is:

SUBSCRIPT <symbol>,<index>,<list>

<symbol> is the name of a variable symbol to receive the selected
string. If the index is out of range, it will be set to a
null string.

<index> is the index to be applied to the list.

<list> is a parenthesized list of items from which the selection is
to take place.

aw

Controlling NSW Toois and Configurations under OS/MVT
December 1, 1980 -- -art III: ECI

PAGE 31

3.6.24. THEN STATEMENT

The THEN control statement is a noise statement introduced only to
make ECI programs more readable. It is intended to open the group
following an IF statement. Depending on your indentation
convention, you may also want to use THEN after an ELIF statement.

For example:

IF <expression>
THEN

<statement group>
ELSE

<statement group>
END

Rather than:

IF <expression>
<statement group>

ELSE
<statement group>

END

V,

';, ,4 ,,; v" , ,,.,, , ,; ,; , . .2 ,; :,;.;.;.;>,. .;.. ;,.; ..-.... ,-:..; '., .- , .* ; -. - .: ..,

T..Wlr~~~lr. nmuw.a A I r mnWfPp.J 'r7U v1,nPr.l.r nl W rNV WTJ U %%WkWf"X -V fln,.0

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IIl ECI

PAGE 32

3.6.25. WHILE STATEMENT

The WHILE control statement introduces an iterative control
structure which includes all following statements through a matching
END statement. Well formed control structures can be nested within
a WHILE structure to a depth bounded only by the main storage
available to the ECI interpretor. The syntax is:

WHILE <expression>

<expression> is an arbitrary expression whose boolean value, while
TRUE, triggers execution of the entire control structure. If
its value is initially FALSE, flow of control skips directly
to the statement following the matching END statement. If it
is TRUE, the statements of the structure are executed, and
when the matching END statement is encountered, control
returns to the WHILE statement. This process continues until
<expression> evaluates to FALSE or until the number of
iterations exceeds the value of the watchdog counter SYSCNT.
See the section entitled SYSTEM VARIABLE SYMBOLS for a
discussion of SYSCNT.

3.6.26. COMMENT STATEMENT

The comment statement is a no-operation statement which allows
program annotation. The syntax is:

<any string of characters>

4P

C%

- ,.Wrn r K a~ SrKr r rSr " 5 MS.r fl .j* "* V V " W WV -~ -V -W -M -S - -. - -

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 33

3.7. APPENDIX A -- ECI LANGUAGE GRAMMARS

All of the grammar descriptions that follow could be presented in pure
BNF form; however, the following extensions eliminate recursive
notation and aid readability and parser implementation.

< > Angle brackets are used to define nonterminal symbols
corresponding to production rules. They may be nested, so that
<<ident><cntl>> denotes a nonterminal symbol different from
<ident> or <cntl> alone.

This compound symbol denotes a grammar production or rewrite
rule.

i Denotes an alternation operation.

blank or null: indicates concatenation. Concatenation has
precedence over alternation, so that <x>::=<y><z>j<y> means
rewrite <x> as either <y><z> or simply as <y>. Q

(} Braces are used to indicate zero or more occurrences of the
enclosed productions.

Square brackets are used to indicate an optional production.

() Parentheses are used as grouping brackets. Thus <x>::=<y><z>[<y>
is not the same as <x>::=<y>(<z>l<y>). Grouping is useful to
factor out common parts of production rules.

CAPS or " ": terminal symbols are in all capitals, or are enclosed
in double quotes. This makes the double quote a reserved symbol
in this notation.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 34

3.7.1. STATEMENT GRAMMAR

3.7.1.1. SYNTAX

<any ECI statement> < blanks> <command verb> <blanks>
[<parameter list>] <eol>

<command verb> ::= ALLOCATE I CREATE I DELETE I ELSE [ELIF i
END I EXECUTE I FREE I FREED I GET I IF I
INCLUDE I INDEX I INTERPRET I MENTJ NOTE J
PUT I QUERY I SET I SETQ I SETX I STOP I
STOP I SUBSCRIPT I TASKLIB I THEN I WHILE

<blanks> ::= <one or more blanks>

<parameter list> ::= [<expression> {<separator> <expression>)]

<expression> <a parameter expression as described fully
under "EXPRESSION GRAMMAR">

<separator> [<blanks>] <comma> [<blanks>]

<eol> ::= <end of record> (one statement per record allowed)

3.7.1.2. SEMANTICS

Only level-0 commas function as separators. Any comma enclosed in
quotes or within matched parentheses is not a separator. There
are two actual parameters in the string:

"ASM l0,20,40",(CO 10,15,70)

Missing or null parameters are indicated by succeeding commas and
optional blanks. There are 3 null parameters and two non-null
parameters in the string:

,A,B
C

(.

~ *9- '- %'%' *:bt ~i
a~ ~ ~

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 35

3.7.2. PROGRAM GRAMMAR

3.7.2.1. SYNTAX

<simple group> {<allocate stmt> I <create stmt> I
<delete stmt> I <execute stmt> I
<free stmt> I <freed stmt> I
<get stmt> I include stmt> I
<menu stmt> I <note stmt> I
<put stmt> I <query stmt> I
<set stmt> I <setq stmt> I
<setx stmt> I <stop stmt> I
<subscript stmt> I <interpret stmt>)

<while group> <while stmt> <block> <end stmt>

<if group> ::= <if stmt> [[<then stmt>J <block>]
(<elif stmt> [[<then stmt>] <block>])
[<else stmt> [<block>]]
<end stmt>

<block> ::= (<simple group> I <while group> I <if group>)

<program> ::= <block> (<end stmt> I <eof>)

<eof> ::= <end of file>

3.7.2.2. SEMANTICS

1. A program is terminated upon reaching the first unmatched <end
stmt>, or an <eof>. In the latter case, an <eof> acts also as an
implicit END for any <while group>'s or <if group>'s still open.
Operation of a control structure is the same whether it is
explicitly closed or closed by program closure.

2. Any of the program structures <if group>, <while group> may be
nested to any depth, so long as the ECI interpreter does not run
out of main storage.

SWll formedness of <group> and <block> structures is only
minimally checked by the interpreter. Some anomalies may go
unchecked, and may generate unexpected results.

Controlling SS Tools and Configurat ions inder 0S/WV'T
De-(_#mhvr 1. 1980 - Part III: ECI

PAGE 36

3.7.3. EXPRESSION GRAMMAR

3.7.3.1. SYNTrAX

<quoted string> .:: ,quote, <a string of 0 or more chars
other than quote> -matching quote>

<literal string> ::=a string of one or more chars other
than blank, parentheses, or opera-
tors as defined below>

<token> :: (<quoted string> I <literal string>)
([<blanks>] (<quoted string> I

<literal string>))

<unary op> :: [<blanks>] (""I fl-t I "-") [<blanks>]

<mulop> [<blanks>) "* "I) (<blanks>I

<addop> [<blanks>] (9"1" %'t) (<blanks>]

<re lop> [<blanks>] 91 -< <19 I 01<=1 I 11-"f I 11=1 I
91> ff 19>91I ft>") (<blanks> I

<andop> (<blanks>] [& <blanks>]

<orop> (<blanks>] [I <blanks>]r

<value> <unary op> (<token> I""<expression> ""

((<blanks>] (CC <expression> ""I<token>))

<multiply> <value> (<mulop> <value>)

<addition> <multiply> (laddop> <multiply>)

<relational> :=<addition> (<relop> <addition>)

<and> :=<relational> (<andop> <relational>)

<express ion> <and> (<orop> <and>)

% %%

Controlling NSW 7ools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 37

3.7.3.2. SEMANTICS

1. For quoted strings both single and double quote marks are
supported. An opening quote of either type must be matched by a
single closing quote of the same type. Imbedded quotes of the
same type must be doubled, but imbedded quotes of the opposite
type may be used freely. The actual value of a quoted string is
the string itself minus the leading and trailing quotes, and with
all imbedded double occurrences of the same kind of quotes,
reduced to single occurrences. For example:

~bc+2' has as its value abc4-2
'a'bc+2' has as its value a'bc+2
'a' 'bc""d' has as its value a'bc""d
of a'bc""d" has as its value af'bc"d

2. Literal strings are runs of non-blank characters other than any of
the special characters that have been defined as operators
(parentheses are considered operators for this purpose). The
actual value of a literal string is the string itself. Valid
examples of literal strings are:

abcz
ab$cd
1234
lOOab
1!!#$:;alpha>>>

3. The concatenation of the actual values of succeeding quoted and
literal strings yields a token. Blanks in between succeeding
quoted and literal strings are significant and are concatenated as
well. However, leading and trailing blanks are not included.
Legitimate tokens are:

'a-'123 whose value is: a=123
'a'b'c'd'e' whose value is: abcde
'ab' 'de' whose value is: ab de
enter command?: whose value is: enter command?:
enter command?: whose value is: enter command?:

(followed by 2 significant blanks)

r e,,

IL %**** *% 6 %* II%*L~*~ dt . ~ '.- ~ i ..

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 38

4. For the operators supported by the expression evaluator leading
and trailing blanks are disregarded.

5. The basic unit for evaluation of expressions is the <token>. It is
nothing more than a string. However, most of the operators are
arithmetic and boolean. To support such operations every operand
that is the target of an arithmetic operation undergoes an
implicit coercion from character string to arithmetic value as
follows:

a) If the character string represents a legitimate signed or
unsigned integer then the coercion yields the represented
integer.

b) If the string represents an invalid integer such as +10-2 or
if the string contains alphanumeric or special characters,
or no digits at all the coercion attempts to extract all
digits present in the string, concatenate them, and the
resulting integer number is then used in computation. If no
digits were present then the value zero is used in
computation.

c) For boolean and relational operands successfully coerced
according to rule "a" the value "0" stands for "false" and
"-=0" stands for "true". Otherwise computation proceeds
with rule "b". However, relational operands failing
coercion rule "a" are then compared using their character
values.

6. The result of an arithmetic operation is a signed integer, and the
result of a boolean operation is either 0 or 1. For substitution
into the original ECI statement, all these values are converted
back to character strings.

7. Successive tokens and/or expressions are concatenated just as are
quoted and literal strings. The first element of a concatenation
may be preceeded by a unary operator. Blanks occurring between
succeeding tokens and/or expressions are significant and are
concatenated as well.

8. As usual, the order of evaluation of the operators shown in the
grammar can be altered by means of parentheses. They may be
nested to any desired level that the storage resources of the ECI
expression evaluator allow. Examples of expressions are:

NC.N

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Par.; III: ECI

PAGE 39

abc2 yields abc2
123 yields 123
Ila = 2" yields a = 2
a 2 yields 0
'a' = 2 yields 0
'a' = 2 yields 0
1a' = '2' yields 1
(((-100))) yields -100
-(-100) yields 100
-100.e+2 yields -100.2
"-100.e+2" yields -l00.e+2
(1+2)(3*4) yields 312
(a) (b) yields a b
2*(3+4)/2 yields 7

9. The result of division by 0 is always 0.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 40

3.7.4. VARIABLE SYMBOL GRAMMAR

3.7.4.1. SYNTAX

<symbol table value> ::= "[" <expression> "l"

3.7.4.2. SEMANTICS

The ECI interpreter supports a symbol table with pairs of the
form:

<symbol table name: character string value>

To fetch the value of a symbol the symbol name is enclosed in the
reserved bracket symbols "I" and "I". Whenever such bracket
symbols are encountered, the symbol name string, denoted by the
enclosed expression, is computed and the corresponding symbol
table value is substituted in place. This substitution mechanism
is implemented in the most general sense:

a) Arbitrary nesting of brackets is allowed, with substitution
proceeding from the deepest nested outward.

b) Symbol names are arbitrary expressions.

c) Substitution is done in such a way that the syntax of the
surrounding context is not altered. Substituted values are
never rescanned, either for substitution purposes or for
expression syntax recognition. An exception is "expression
lists", defined in the next section.

d) The context surrounding the bracket symbols does not affect
the evaluation of the enclosed string; thus quote marks
inside a bracketed expression string, all enclosed in quotes
do not follow the quote doubling convention; but quotes
within matched quotes inside a bracketed expression, all
enclosed in quotes, do, regardless of whether all are
surrounded by outer level quotes.

e) Since the reserved characters "[" and "I" are normally
unavailable, the symbols SYSLDELIM and SYSRDELIM (whose
values are "[" and "I", respectively) are provided. Rule
"c" guarantees that the substituted values of SYSLDELIM and
SYSRDELIM are not rescanned.

C

e o

q5

Controlling NSW Tools and Configurations under OS/.IVT
December 1, 1980 -- Part Ill. ECI

-' PAGE 41

f) Symbol table value substitution is concurrent with
expression evaluation. Each command evaluates its
parameters once upon beginning execution. Reexecution of
the command causes reevaluation of its paramesters.

S) Symbol names not present in the symbol table yield null
values.

A few examples are in order. Given the following symbol table
values:

n = 2
save3 a list
list2 - 123

then both:

[(save([n] + 1)1 2] and
[IsaveC(nJ + l)J[nJJ

yield the result "123". Other examples are:

losv'31Pyels ls

"[save3"" yields list
[save3j" yields list

"list2 a [list~nj I" yields list2 -123
[n]+[list2j yields 125
[[nJ]+[[save3j(2)] yields 123

. ' 8%.

S

Controlling NSW Tools and Configurations under OS/1VT
December 1, 1980 -- Part I11 ECI

PAGE 42

3 7.5 EXPRESSION LIST GRAMMAR

S 1. SYNTAX

<list> :' [-expression- {'separator- <expression-)] I
["(-expression- (separator> lexpression-i ")"1

3 5 5 2. SEMIANTICS

Most command parameters are single expressions; however, s(me

commands have parameters, called sublists, which are themselves
lists Sublists are enclosed in parentheses. Sublist elempnts
are extracted according to the same rules used for command
parameter breakout, but sublists do have one unique property. It
is possible to alter the number of sublist elements by variable

symbol substitution, because symbol substitution occurs before
sublist breakout and expression evaluation. This is an exception
to the rule that symbol substitution does not alter context.

Since both command parameters and parameter list elements are
separated by commas, the convention is made that matched
parentheses enclosing ANY command parameter are not a part of the
parameter value unless they are inside of quotes,

0e

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 43

A few examples follow:

1,2,3 yields 1
2
3

1,1+1,1+1+1 yields 1
2
3

(1,2),3 yields 1,2
3

given
sl - xz 98,99

then
(a ,2),[slJ,,end

yields az 1,2
xx 98
99
,<null1>
end

but if
si "xz 98,99"

then
(az 1,2),[slJ,,end

*yields ax 1,2
xx 98.99
<null>
end

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 44

3.8. APPENDIX B -- COMMAND SUMMARY

ALLOCATE - allocates an existing data set to an IBM OS file.

(0) return code:
0 --> successful allocation
8 --> unable to locate local data set

16 --> any other error
(I) ddname: O/S 360 file to be bound
(I) dsname: local data set to be bound
(I) share flag: share/non-share semaphore
(I) check: optional CHECK/NOCHECK PO-member test

CREATE - creates an empty local data set.
(0) return code:

0 -- > successful creation
4 -- > local data set already exists

12 -- > insuficient resources

16--> any other error
(0) dsname: return local data set name
(I) dsname pattern: pattern to generate local dsname
(I) global file type: NSW global file type
(I) filesize: initial file size in kilobits
(I) growth: file growth increment in kilobits
(I) directory size: number of directory blocks

DELETE - deletes a local data set.

(0) return code:
0 --> successful deletion
8 -- > unable to locate local data set

12--> insufficient resources
16 -- > any other error

(I) dsname: local data set to be deleted

ELSE - opens an unconditional execute group.

ELIF - opens a conditional execute group.

(I) expression: arbitrary expression whose boolean
value determines execution of group

END -closes control structures and programs. %

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 45

EXECUTE - executes a TSO command.

(0) return code:
0 --> program terminated normally

12 --> program terminated abnormally
(I) command: command string to be executed

FREE - frees an allocated IBM OS file name

(0) return code:
0 --> successful free
8 -- > unable to locate ddname

12 -- > insufficient resources
16 -- > any other error

(I) ddname: IBM OS file name to free 0

FREED - frees an allocated local data set

(0) return code:
0 -- > successful free
8 -- > unable to locate dsname

12 -- > insufficient resources
16 -- > any other error

(I) dsname: local data set name to free

GET - fetches an NSW file into a local data set.

(0) return code:
0 --> successful execution
4 --> unable to obtain file

(0) nsw file name: returns resolved NSW file name
(0) dsname: returns local data set name -

(0) altered filespec: returns filespec if altered
in any HELP calls, else null .

(0) qnswcopy: returns 0 if tool copy made, or
1 if NSW copy allocated directly

(0) member name: returns name of member of library,
or null

(I) filespec: NSW "filespec"
(I) gft or attrno: global file type in either

attribute-code or literal form
(I) qset: NSW file semaphore set switch

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part III: ECI

PAGE 46

IF - opens a select control structure.

(I) expression: arbitrary expression whose
boolean value determines
execution of following group

INCLUDE - executes an ECI program from a local data set.

(0) return code:
0 --> successful execution of program
8 -- > program aborted during execution

16 -- > program could not be located
24-- any other error

(I) filename: IBM OS ddname bound to a local data
set, else null to invoke a default
system provided library

(I) member name: PO member to be retrieved from
library, else null

INDEX - yields position of argument within a search
list.

(0) index: variable to return position 0..n of
argument in search list, else -1

(I) argument: character string to be matched
(I) list: search list

INTERPRET - switches the ECI interpreter to interpret mode
where ECI commands are executed interactively

MENU - performs menu driven input prompting.

(0) index: returns index of matched input in menu
list, or -1 if attention.

(0) input: returns user input
(I) prompt: message to prompt user for input
(I) menu: menu list of acceptable inputs
(I) help: HELP list

NOTE - displays messages on the user's terminal.

(I) message: message to be output on user's terminal b

~ ~ Id ' tp. ~I'

Controlling NSW Tools and Configurations under O/MVT
December 1, 1980 -- Part IV: BJP/360

PART IV

BJP/360 -- The NSW HVT Batch Job Processor

This section is separately available
as UCLA document UCNSW-207

Na

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

TABLE OF CONTENTS

4. PART IV: BJP/360 1
4.1. BJP FUNCTIONAL SPECIFICATIONS • 1
4.1.1. INTRODUCTION 1
4.1.2. THE BJP-WMO RELATIONSHIP.. 3
4.1.3. BJP DESIGN GOALS 4
4.1.4. JOB NAMING SCHEME 5
4.1.5. BJP IMPLEMENTATION OPTIONS.. 6
4.1.6. COMMONLY USED DATA ELEMENTS.......... 8
4.1.6.1. TOOL ID LIST 8
4.1.6.2. ACCOUNTING LIST........... . 9
4.1.6.3. TOOL DEPENDENT PARAMETER LIST.. 9
4.1.6.4. STATUS LIST 10
4.1.6.5. WORKSPACE DESCRIPTOR.......... . 10
4.1.7. THE PROCEDURE CALLS.......... . . 11
4.1.7.1. ALLOCATEJOB. 11
4.1.7.2. QUERY 11
4.1.7.3. ENDJOB 13
4.1.7.4. JOBHALTED. 13
4.1.7.5. STARTJOB 14
4.2. BJP/360 IMPLEMENTATION I....... 15
4.2.1. UCLA DEPENDENCIES....... 15
4.2.1.1. SYSOUT ROUTING SVC 15
4.2.1.2. THE DISK SYSOUT WRITER . ..
4.2.1.3. THE GENERAL MESSAGE FACILITY 16
4.2.1.4. THE MAGIC DATASET AND TABLE 16
4.2.2. COMMUNICATIONS SUMMARY 18
4.2.3. OPTION CHOICES. 18
4.2.4. LOCAL JOB NAMES. 20
4.2.5. WORKSPACE MANAGEMENT. 21
4.2.6. MANAGING CYCLE NUMBERS.......... .. 23
4.2.7. JOB TRACKING. 24
4.2.7.1. THE TMT ENTRY. 24
4.2.7.2. THE GMF QUEUE ENTRY. 24
4.2.7.3. THE SHORT-TERM MEMORY. 26
4.2.8. LOGIC SUMMARY 27
4.3. APPENDIX: BJP/360 INITIALIZATION PARAMETERS 29
REFERENCES 31

.1z

~ N .~**

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 1

4. PART IV: BJP/360

4.1. BJP FUNCTIONAL SPECIFICATIONS

4.1.1. INTRODUCTION

This section of this document has been assembled from working papers
prepared by Charles Muntz of Massachusetts Computer Associates, and
from discussions held at NSW contractors' meetings. Much of it is
derived from references 6 and 7, which we believe to be obsolete.

The Batch Job Package (BJP) on an NSW Batch Tool Bearing Host (BTBH)
cooperates with Works Manager Operators (WMO's) to control the
execution of NSW batch jobs. Once an NSW user has submitted a job,
it is the responsibility of a WHO and a BJP to execute the job and
to produce any required status reports. The WMO/BJP combination
serves a role analogous to that of the NSW interactive Foreman
(reference 1), with a well defined division of the usual Foreman
responsibilities.

Specifically, the WO:

* Serves (through the Interactive Batch Specifier, or IBS --

reference 2) as the user interface to the batch tool.

* Keeps the Local Name Dictionary (LND) for the job.

* Supervises (through the File Package -- reference 3) required
file prestaging and delivery operations.

* Optionally, fills information into a skeleton command file and
transmits the result to the BTBH for submission.

* Records accounting and statistical information in permanent NSW
files.

BJP includes all functions (exclusive of File Package functions --
reference 3) required at a BTBH to accomplish batch job execution.
Specifically, it:

* Allocates, manages, and frees the tool workspace. -

* Performs the local BTBH Operating System "submit" operation, if
appropriate.

* Monitors the submitted job's progress, if requested.

U

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 2

* Optionally forces early termination of the running job.

* Optionally senses job termination and reports it to WMO.

* Reports job time and charges to WHO.

,..

'

.1*

.

:h

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 3

4.1.2. THE BJP-WMO RELATIONSHIP

An NSW may contain any number of WHO's, but not more than one per
BTBH. Each WHO consists of a WHO database and any number of WHO
processes. Likewise, a BJP may consist of any number of BJP
processes, all sharing a single (possibly only virtual) local
database. Not more than one such database may occur on a single
BTBH within an NSW.

An executing NSW batch job is associated with just one WHO database
and just one BJP database. It is therefore associated with a
specific WHO host and a specific BJP host. Neither the WHO nor the
BJP is concerned with how many processes of the other type are
present on the other host associated with a job. All requests in
either direction are bound to a specific job, and thus to a specific
generic process name on a specific host. Thus all such requests are
addressed by host-specific generic process names. Replies to such
requests are, of course, specifically addressed.

In other words, when a BJP needs to converse about a specific job,
its conversational partner will be any WHO at a specific BTBH.
Likewise, when a WHO needs to converse about a specific job, its
conversational partner will be any BJP at a specific NSW host.

The conversations that can occur between a job's WHO and BJP are
limited to:

* ALLOCATEJOB -- The WMO requests the BJP to allocate a workspace

for a new job.

* STARTJOB -- The WMO requests that a fully staged job be
submitted to the local BTBH operating system for execution.

* QUERY -- the WHO requests the status of a job.

* JOBHALTED -- the BJP reports to the WHO that a job has been

completed.

* ENDJOB -- the WHO requests the BJP to free the job's workspace.

J

4

MC,' N I

0I

Controlling NSW Tools and Configurations under OS/HVT
December 1, 1980 -- Part IV: BJP/360

PAGE 4

4.1.3. BJP DESIGN GOALS

In designing the BJP external specifications, these goals were
considered:

* There will be many implementatons of the BJP, and they will

probably all need to work quite differently.

* The WHO's transactions with a BJP to execute a specific tool
must be tailored both to the tool and to the BJP that manages
the BTBH where the tool is mounted. Thus the WHO will be driven
by tables stored in the descriptor for the tool implementation
instance, within the Works Manager's data base. The BJP
implementor should have a good understanding of the capabilities
and limitations of the WHO's table interpretor (reference 4).

* The minimal BJP must be very minimal indeed, as some useful NSW
BTBH's will not have the resources to execute or the commitment
to implement a massive BJP.

* Specifically, it should be possible for a BJP working with an
operating system that keeps sufficient tables of its own to
maintain no local database at all.

* Therefore, it must be possible for a BJP to know a job only by
its local name.

* On the other hand, a BJP may be as intelligent as it wishes,

subject only to the constraints of this specification.

* The WHO will in all cases be the dominant process. It will make
the decisions, and the BJP will follow orders.

* The BJP and Foreman specifications should be compatible, and
should allow the possibility of future specification of a
continuum of Foreman-like processes bridging the gap between the
two present specifications.

, !
S.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 5

4.1.4. JOB NAMING SCHEME

Each WHO maintains a queue of jobs in progress. When an NSW user
submits a job, the WM to which the user is assigned contacts a WHO
with the job request. WHO assigns the job to an unused location in
the queue, an assignment which remains intact throughout the stages
of job execution.

When a WHO is "cold-started" all its queue entries are marked free.
Such cold starts are explicated by maintaining a WHO cycle number,
initially 1, which is incremented (except that the successor to
16383 is 1) each time a cold start occurs. Thus the NSW job name is
a triple: WHO host number, that WHO's cycle number, and position
within that cycle's queue. When WHO contacts BJP regarding an NSW
job, its NSW name is included in the message. BJP may, but is not
required to, detect changes in the cycle numbers of WHO hosts and
initiate local cleanup operations. WHO is incapable of such
cleanup, so if the BJP implementation is such that garbage can
accumulate from WHO cold starts, this feature may need to be
included in the BJP design.

Typically, a BTBH operating system will have its own scheme for
assigning a name to a job in its queues, and a BJP will usually have
to use that local name when conversing with its local operating
system. To support this notion, the BJP may define a "local job
name , an arbitrary character string not meaningful to WHO, and may
have WHO file that string in its database along with the NSW job
name. Such a string may be associated with the job at any point
during its life, but once it is assigned, it may not be changed.
After such an assignment, every time WHO contacts BJP regarding the
job, both the NSW job name and the assigned string are included in
the message. When BJP contacts WHO, it can supply either or both
names. Thus WHO takes on the responsibility for maintaining the
relationship between the names, reducing BJP's need for a local
database.

When both names are specified in a BJP-to-WHO message, WHO is
committed to make consistency checks. When inconsistent local names
are detected by WHO, it will initiate and fully monitor job
termination and cleanup activities. In practice, systems crash, and
the databases of the BTBH and WHO may not always be in perfect
synchronism. It is the responsibility of the BJP designer to
guarantee that local-name strings cannot be reused "too soon".
Ideally, such names should "never" be reused if there is a
possibility that the BJP may contact the WMO and specify the local
name only. If the BJP can always provide the full NSW job name, no
problem arises so long as the BJP remains self-consistent. More
study is needed in this area, but in the meantime, the BJP designer
should satisfy himself that his local job naming scheme will not
cause synchronization problems. -

pl

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 6

4.1.5. BJP IMPLEMENTATION OPTIONS

Besides the usual options of program design and implementation that
are not externally visible, the BJP external specification allows
for much variation in actual BJP behavior. For instance:

* The BJP may be one or many NSW processes.

* The BJP may call its jobs by their NSW names or by their local
names. It may assign a local name if it needs to ot wishes to,
and if it does, it may be assigned at any point during the job's
life. It is not absolutely necessary that BJP remember the NSW
name of a job.

* The BJP may receive notification from its local operating system
when a job is complete, and it may transmit this notification to
WMO. Alternatively, WMO can learn of the completion of a job by
polling BJP, so it is not absolutely necessary that BJP remember
what WHO host submitted a completed job. (But the
implementation of the optional notification mechanism does not
mean that the required polling mechanism can be left
unsupported.)

* It is not necessary that the BJP remember the association
between a job and its workspace name.

* The BJP may arrange for job submission in any way that it
wishes. The STARTJOB transaction defined in this specification
is intended to be only one such mechanism, and the specification
can be expanded to accomodate others where a need exists. For
instance, on some systems, the File Package may write certain
classes of "standard system input" files directly into operating
system job queue space. For such a scheme to be useable, the
BJP must have some way of knowing the local name for the job, in
order to be able to query the Operating System for job status.

* There are at least two mechanisms that can be used to bind the
names of pre-staged input files to the executing job. These use
WHO/File Package (reference 3) interactions, but the scenarios
are set up in the tool descriptor, which must be designed by the
BJP designer.

1) The most general scheme uses "File Package feedback." When
the WHO invokes the FP-EXP (reference 3) procedure to
request file staging to the BTBH, the File Package returns
the generated local file name. This name can be inserted
into the command stream by the WHO, and can thus be made
available to the tool. The command stream is always the
last file to be sent to the BTBH, to allow this scheme to
work.

,. I.

Controlling NSW Tools and Configurations under OS/VT
December 1, 1980 -- Part IV: BJP/360

PAGE 7

At this writing, File Package feedback cannot be used for
the command stream itself. That file is staged through
the FP-TRANSP procedure (reference 3), which does not
provide such feedback. However, in an implementation that
does not use STARTJOB, this might be less of a
restriction.

2) A somewhat simpler scheme uses "computable names." In this
scheme, each file that the tool may use is assigned a
unique and fixed simple name. The BJP ensures that the"workspace" string returned from ALLOCATEJOB is
sufficently unique to guarantee that all names formed by
combining that string with the set of simple file names
are unique. The WMO sends the File Package these fully
specified names, and no File-Package-generated names are
involved. This is currently the preferred way of handling
the command file.

* Likewise, there are at least two mechanisms that can be used to
bind the names of deliverable files produced by the tool and
delivered by WHO. These, too, use WMO/File Package (reference
3) scenarios which must be designed by the BJP designer.

1) The method currently preferred is identical to the
"computable names" scheme mentioned above, except that
instead of using FP-EXP to stage data into the computed
file names, the WHO uses (indirectly, through WH-DELIVER)
FP-IMP (reference 3) to deliver data from those names.
The files themselves are created by the executing job.

2) An alternate method, which has not been implemented at
this writing, uses an as yet unspecified FP-RESERVE
procedure to reserve file space under a given or generated
name before tool execution. The files could be named
either through File Package feedback or as with computed
names.

!e)

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 8

4.1.6. COMMONLY USED DATA ELEMENTS

This section defines the data lists that are used in the procedure
calls defined in the next section.

4.1.6.1. TOOL ID LIST

Every invocaton or reply message between WHO and BJP includes tool
id list:

LIST(cycle-no, index, 0 denotes "unknown".
tool-instance-id, integer, 0 denotes "unknown".
local-name) charstr, length of 0 denotes

"unknown".

When WHO sends a tool id list it always includes cycle no and tool
instance id, and local name if and when WMO learns of it. When
BJP sends a tool id list, it must include either cycle no and tool
instance id, or local name, or both. If it includes both, and if
a local name has been associated with the job before, WMO will
perform consistency checks.

Note that this list does not include the "NMO host number"
component of the NSW job name. This is because this list is
always associated with a generic message, and the MSG primitives
"receivegenericmessage" and "sendgenericmessage" provide or
require the host number as a separate argument. To include it
here would be redundant, and would mereley introduce a potential
for inconsistency.

I
00

...

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 9

4.1.6.2. ACCOUNTING LIST

The accounting list is as specified for the NSW Interactive
Foreman (reference 1).

LIST(cost integer, cost in cents.
LIST(type, index, resource type:

1 -- > CPU seconds
2 -- > connect minutes

3 -- > I/O operations
4--> primitive calls
5 -- > main storage usage
6 -- > file storage usage

(to be extended
according to BTBH
needs)

amount) integer, resource utilization:
in resource units or cents.

(repeated as many times as needed)

This list has two uses. It is transmitted from WHO to BJP in
ALLOCATEJOB, where it contains estimates of the resource
requirements of a job. In this case, it can be as simple as
"LIST()".

It is transmitted from BJP to WMO both in the JOBHALTED message
and in the reply to QUERY. In all cases where "status code" is
"halted", the values in the list should be the final ones, and
they should be equal in all such messages. When more than one
copy of such final data reaches WHO, it reserves the right to
choose arbitrarily which one to record in its statistical and
accounting files. BJP must preserve this data and repeat it in
any QUERY reply until ENDJOB has been received.

4.1.6.3. TOOL DEPENDENT PARAMETER LIST

The tool dependent parameter list is as specified for the NSW
Interactive Foreman (reference 1). This list is copied unchanged
and unexamined from the tool descriptor and sent to the BJP for
whatever purposes it may wish.

n-LIST(parameter) charstr -- from tool
descriptor.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 10

4.1.6.4. STATUS LIST

The status list is BJP's almost-universal reply to WHO's

transactions:

LIST(status-code, index:
0--> not found.
1--> workspace

allocated.
2 -- > scheduled

(submitted).
3 --> running.
4--> halted

(ready for
delivery).

5 -- > deleted.
100 -- > job names

inconsistent.
101 -- > job refused

by local system
(non-recoverable).

qcan-proceed, boolean:
true --> proceeding.
false--> has been

cancelled.

human-oriented-status)
charstr, length 0 0

for null.

4.1.6.5. WORKSPACE DESCRIPTOR ,.

The workspace descriptor is as specified for the NSW Interactive
Foreman:

LIST(name, charstr.
access-info) charstr, length=O

for null.

1P

*01 If,

Controlling NSW Tools and Configurations under OS/HVT
December 1, 1980 -- Part IV: BJP/360

PAGE 11

4.1.7. THE PROCEDURE CALLS

All BJP transactions are with a WHO. All follow the rules of the
NSW Transaction Protocol (NTP -- reference 5). All transactions are
invoked by host-specific generic process addresses, and are
completed, when applicable, by specifically addressed messages.

Following our usual practice, we represent a transaction in the
form:

G/process-procedure (arguments) -> (results)

where "G" indicates that all these transactions are generically
addressed, "process" is a shorthand name for the process that
receives and executes the transaction, and "procedure" is the name
of the specific procedure that that process is to perform. The
"result" may be empty if only a positive or negative acknowledgement
is defined. In cases where no response of any kind is expected, the
arrow and "(result)" are omitted.

4.1.7.1. ALLOCATEJOB

G/BJP-ALLOCATEJOB (tool-id-list,
accounting-list,
tool-dependent-parameter-list)

-> (tool-id-list,
status-list,

workspace-descriptor)

ALLOCATEJOB is the first communication that a BJP receives about
an NSW job. Its successful completion binds a local system
workspace to an NSW job name. Depending on local system
characteristics, BJP may want to purge the workspace of any
existing files. BJP may refuse to allocate a workspace if it
believes that the NSW job name is already active. The "accouting
list" is used for resource estimates.

4.1.7.2. QUERY

G/BJP-QUERY (tool-id-list,
qproceed)

-> (tool-id-list,
status-list,
accounting-list)

N1-p

Controlling NSW Tools and Configurations under OS/HVT
December 1, 1980 -- Part IV: BJP/360

PAGE 12

"Qproceed" is like "qcan proceed" in the STATUS LIST, with values:

true -- > job can proceed.
false -- > cancel job.

Cancelling a job merely schedules it for priority exit from the
system with a minimum of further resource utilization. The job

remains known to the BJP until deleted by a successful ENDJOB.
WHO will issue QUERY regardless of whether JOBHALTED is
implemented.

%'S
'S

is

'S

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 13

4.1.7.3. ENDJOB

G/BJP-ENDJOB (tool-id-list,
workspace-descriptor)

-> (tool-id-list, 0
status-list,
accounting-list)

This is the last call that BJP receives relative to an NSW job.
Its successful completion frees the NSW job name, the workspace
name, and where applicable, the local job name, for possible
reuse, and allows the BJP to discard the accounting information
for the job. Depending on local conditions, BJP may also wish to
purge the workspace of any remaining files.

BJP may refuse to perform ENDJOB for a job whose status is other
than "halted". WHO is obliged to cancel a job in any other state
through QUERY, and to wait for it to reach "halted" state before
issuing this call.

BJP is not allowed to report normal completion of ENDJOB when the
requested job cannot be found.

4.1.7.4. JOBHALTED

G/WHO-JOBRALTED (tool-id-list,
status-list,
acounting-list)

This is the only function in WHO invoked by BJP. It requests WHO
to initiate job delivery operations. It is an optional feature:
if it is not implemented, WMO will eventually discover that the
job is completed through the reply to one of its periodic
BJP-QUERY requests.

Since there is no acknowledgement to this call, BJP may not assume
that WHO has received it until ENDJOB arrives as a confirmation.
Accordingly, BJP may, at its discretion, resend this message any
number of times. WHO will tolerate such redundant messages until
it has received a successful reply to ENDTOOL.

V '4~27 ~

Controlling NSW Tools and Configurations under OS/HVT
December 1, 1980 -- Part IV: BJP/360

PAGE 14

4.1.7.5. STARTJOB

G/BJP-STARTJOB (tool-id-list,
workspace-descriptor,
filename)

-> (tool-id-list,
status-list,
accounting-list)

S The "filename" parameter is a character string which fully
specifies whatever information the BJP requires to submit the job.
Usually, this will be a simple name which, together with the
workspace descriptor, identifies and provides access to a
command-language file to be submitted to the local operating

*system.

If the reply to STARTJOB indicates a "status code" of "job
refused", then the job proceeds immediately to state "halted".
Under present specifications, the STARTJOB may not be retried.
WHO will skip delivery and proceed to its job purge scenario.

STARTJOB need not necessarily be a part of a BJP implementation,
if other mechanisms can be designed to provide the same facility.

S

Il

Uw

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 15

4.2. BJP/360 IMPLEMENTATION

4.2.1. UCLA DEPENDENCIES

BJP/360 is an implementation of the NSW BJP for IBM real-memory
systems. Specifically, BJP/360 was developed to operate on the UCLA
IBM System/360 Model 91KK under the MVT Operating System with the
Time-Sharing Option, TSO (we commonly refer to this combination as
OS/MVT).

Unlike other UCLA implementations of NSW components, BJP/360 is not
directly exportable to other installations running OS/MVT. The
system facilities needed to implement a BJP are not present in
OS/MVT except through extensive installation modifications. OS/MVT
has been in use for over a decade at this writing, and it exists in
many installations. Many of these have added the kind of system
facilities needed by BJP; however, there has been little
standardization of these additions. Therefore, BJP/360's use of the
UCLA system embellishments may or may not map simply into the
equivalent embellishments at another installation.

Among the unique system facilities used by BJP are:

4.2.1.1. SYSOUT ROUTING SVC

The UCLA Sysout Routing SVC, or SRS (reference 8) is used to
submit data sets containing Job Control Language, or JCL
(reference 9). SRS provides services not found in many
job-submission facilities, such as:

1) Negotiation of a unique jobname directly, independent of the
jobname that will be found in the JCL.

2) Specification of the name of a data set to be created and
filled with the standard system output (SYSOUT) that will be
produced by the file.

3) Specification of a disk volume where that data set is to be
created.

4) Specification of a "message queue" name through which the
system is to distribute notification of the fact that the
SYSOUT data set has been produced and is ready for viewing.

4.2.1.2. THE DISK SYSOUT WRITER

The UCLA disk SYSOUT writer DSKWTR is used to linearize the
various (possibly parallel) output streams produced by the
executing job and to place the result in the SYSOUT data set
according to the specifications relayed it from SRS. This

?" ' " .- - - .. ' ' .w ¢, . . *a

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 16

mechanism offers these unique facilities:

1) Creation of a data set using a recommended name and a
recommended disk volume.

2) Sending notification via a specified "message queue" when
the data set is complete.

3) Reporting in the notification message the job name, the cost
of the job, and the job's usage of various system resources
that are components of billing and statistics.

4.2.1.3. THE GENERAL MESSAGE FACILITY

The UCLA General Message Facility, or GMF (references 11, 12) is
used to receive and queue the notifications from DSKWTR. Unique
features of GMF include:

1) An interface to using programs that allows them to read and
write "messages" to named "message queues".

2) A facility through which a using program can "listen" for
notification that messages have been added to specific
message queues.

3) Capability to store small numbers (up to 255) of messages in
each message queue indefinitely, and to delete messages in
any order.

4) A structure that allows multiple using processes to operate
on the same message queues concurrently and without any
concern for inter-user synchronization.

4.2.1.4. THE MAGIC DATASET AND TABLE

The UCLA "Magic Dataset", or TMD, and "Magic Table", or TMT
(reference 13) are used to communicate among the above-mentioned
facilities, and also to support job status queries from BJP/360.
Unique features of TMT/TMD include:

1) Extensibility of the OS/MVT job queue -- TMD can be
considered a direct extension to the "job table" kept in the
job queue. It thus provides additional space for storing
job information of kinds that the OS/MVT facilities do not
support.

2) Fast access to job information -- TMT is an in-storage
summary of the job tables in the job queue and TMD.

% i

Controlling NSW Tools and Configurations under OS/NVT
December 1, 1980 -- Part IV: BJP/360

PAGE 17

3) Up-to-date information on a job's status -- any program with
the proper authorizations can inquire of TNT as to the
(almost) instantaneous state of a queued or executing job.

S

" . . . i" " " " ... ,, . . .,'- ""p ,." '' ,,,.¢ '" .",'' ¢ " ",P ,,. "t °- "" ' -' ".'." " -" -'" , , " '" " " -" ')'

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 18

4.2.2. COMMUNICATIONS SUMMARY

BJP/360 functions as an NSW core-system process with generic name
"BJP". It communicates with other NSW processes using the NSW
Network Transaction Protocol, or NTP (reference 5) On an IBM system,
NTP is implemented on three levels:

* The procedure-call level is implemented by the PL/PCP
subroutine package (reference 15).

* The MSG message level is implemented by the PL/MSG subroutine
package (reference 16).

* The NSWB8 data encodement level is handled by the PL/B8
subroutine package (reference 10).

4.2.3. OPTION CHOICES

In designing a BJP implementation, certain choices in behavior are
allowed. In the case of BJP/360, these options have been selected:

4.2.3.1. The BJP is a single task, and executes as a single swapped
time-sharing job under TSO. It is written in PL/I (IBM Optimizing
Compiler), with a few Assembler-language subroutines for system
interfaces.

4.2.3.2. The BJP is automatically started by MSG Central whenever MSG is
initialized. Subsequently, should the BJP crash in any way, it
will be restarted through the normal process-spawning capabilities
of generic-message processing.

4.2.3.3. BJP/360 materializes to MSG as a single NSW process, which accepts
only generic messages, and will accept any number of them. MSG is
aware, through the local attributes attached to generic name
"BJP", that only one such process is ever to be started at a time.
Thus, if a generic message for a BJP arrives at a time when a BJP
process exists but is not enabled to receive it, the message will
be queued for that process, rather than trigger spawning of a new
process.

4.2.3.4. BJP/360 assigns a unique local jobname at the time of processing
the STARTJOB transaction, so a successful reply to that
transaction will always include a local name.

4.2.3.5. BJP/360 does not keep a formal job table; however, the facilities
of SRS, DSKWTR, GMF, TMD, and OS/MVT allow it to recover the WMO
host number, NSW job number, and workspace name when it is
notified of a job's completion. A job can be located either by
its NSW name or by its local name during much of its processing,
as in this summary:

is

'.L

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 19

ICan locate ICan locate I
jby local jby NSW job I
[name? Inumber? I

I I I
after ALLOCATEJOB I I I

(same BJP) I No I Yes I
(new BJP) I No I No I

I I I

I I I
after STARTJOB I I i

(same BJP) I Yes I Yes I
(new BJP) I Yes I No I

I I

I I I
after JOBHALTED I I I 4

(same BJP) I Yes I Yes I
(new BJP) I Yes I Yes I

I I I

4.2.3.6. BJP/360 notifies the WMO of job completion through the
asynchronous JOBHALTED message, always specifying both the local
and NSW job names. Of course, it also supports polling.

4.2.3.7. BJP/360 uses STARTJOB as the mechanism for submitting a job to
OS/MVT. The job is contained in a local data set built by and
filled in by the WMO (using File Package FP/360, of course --
reference 3). BJP/360 never examines or modifies the contents of
this file. This means that all knowledge of OS/MVT JCL is
concentrated in the Tool Descriptor and the WHO.

4.2.3.8. In the general case, BJP/360 does not participate directly in the
mechanisms for binding the names of input and output files to the
executing job. There is one notable exception; the SYSOUT file
uses the "computable names" scheme. Its name is always
"<workspace>.SYSOUT".

[I

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 20

4.2.4. LOCAL JOB NAMES

When a job is submitted by the STARTJOB transaction, it is defined
by a Job Control Langauge (JCL -- reference 9) data set. Normally,
the JOB card in this data set would contain the local job name.
Because OS/MVT requires that jobnames be unique, and because UCLA
requires that the first six characters of the job name be the job's
charge number, the SRS facility includes the capability to specify a
job name external to the data set being submitted. BJP/360 uses
this capability to negotiate a unique jobname with OS/MVT. It
starts with a name of the form

ccccccxX

where "cccccc" is a charge number gotten from a BJP/360
initialization parameter. "xx" represents two "wild characters"
which are filled in with the two low-order base-32 digits of a
pseudo-random number. BJP/360 attempts to submit the job with this
name. If job submission fails with an indication that the job name
is not unique, then "xx" is incremented by 1, taken modulo 32**2,
and used to make a new job name. The job is resubmitted with this
name. This process continues until either the job is submitted, the
job fails for a reason other than non-uniqueness, or until all 32**2
combinations have been tried in vain. If a job name is successfully
negotiated, it is returned to the WMO, which must use it in any
status queries that might cause TMT interrogation.

L

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 21

4.2.5. WORKSPACE MANAGEMENT

Because BJP/360 supports the "computable names" scheme for file
prestaging and delivery, it is required to quarantee that the
workspace name returned by ALLOCATEJOB be unique, and that it
designate an empty file directory. To accomplish this, it defines a
workspace name to be of the form

aaaaaa.iii.scccccc.sjjjjjjj

where:

"aaaaaa" is the UCLA charge number under which BJP/360 is to
allocate workspaces. It is gotten as an initialization
parameter.

"iii" is the UCLA user "initials" under which BJP/360 is to
allocate workspaces. It is gotten as an initialization
parameter.

"sccccccc" is the GMF queue name, as defined in the section entitled
"OPTION CHOICES".

"sjjjjjjj" is an encodement of the pair ("NSW system", "NSW job
number"). "s" is the same character used in the GHF queue
name. "jjjjjjj" is the seven-digit base-32 representation of
the NSW job number (also called the "tool-instance
identifier").

The resulting directory is guaranteed to be unique so long as the
4-tuple (NSW system, NSW host, WHO cycle number, NSW job number) is
unique. Thus the burden of uniqueness is shifted to the WHO's.

The requirement that the workspace name designate an empty file
directory is met by issuing the TSO command

DELETE <workspace-name>.*

against the directory. In fact, this command will not delete data
sets with "." characters in the part of the name corresponding to
the "wild" character "*"; however, the WHO normally does not
generate such names, so this is not likely to be a problem. A
better mechanism should be considered for future implementatons.

The workspace is created by ALLOCATEJOB and destroyed by ENDJOB. In
OS/MVT the corresponding file directory will be created when the
first file is entered into it, usually in the process of prestaging
tool files. Ideally, the directory should be emptied and deleted by
ENDJOB; however, this is not being done at this writing.
Eventually, the directory should be emptied by the same mechanism
used to guarantee that it is initially empty. It should be

)j

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 22

destroyed by the DELINDX entry of the PLIDAIR package (reference
14), which did not exist when BJP/360 was written.

t0

CC

I

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 23

4.2.6. MANAGING CYCLE NUMBERS

When BJP/360 notices a change of cycle number for any given WMO, it
should instigate a cleanup operation. The present implementation
only writes a log message when this is detected. A complete
implementation would perform at least these cleanups:

Scan OS/MVT for any jobs belonging to obsolete cycle numbers of
the WMO host in question. If any are found, cancel them in such a
way that, should GMF notification for them arrive at BJP/360, it
will be ignored.

Scan GMF for all queues for the WHO host, but for a cycle number
different than the one noted. Delete all entries of such queues,
and then delete the queues themselves.

* Scan the filespace defined by the "charge number" and "initials"
being used to create workspace names, and for each subspace with a 4
directory name that indicates an obsolete cycle number of the WMO
host in question, delete all files in the directory, and delete
the directory itself.

* Since all these cleanups cannot happen simultaneously in an actual
running system, leave things in such a state that the cleanup will
continue to be repeated until all obsolete objects are
successfully deleted.

J

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 24

4.2.7. JOB TRACKING

BJP/360 does not keep a formal job table, in keeping with the BJP
design goals. However, there are three mechanisms in the
implementation that approximate a job table:

4.2.7.1. THE TMT ENTRY

From the time that a job is successfully submitted until the time
that its SYSOUT file is created by DSKWTR, a job is represented in
the UCLA implementation of OS/MVT by a TMT entry. During this
time, BJP/360 can interrogate the status of the job through TMT
query services. The job must be identified by its local name, not
by its NSW job number. The information that can be made available
includes:

* The stage of OS/MVT job processing in which the job now resides,
such as input queue, execution, or output queue.

* The name of the work queue containing the job, when applicable,

and its position in the queue.

* The amount of system resources used so far by an executing, job,

including its cost so far.

4.2.7.2. THE GMF QUEUE ENTRY

Between the time that DSKWTR notifies BJP/360 that a job's SYSOUT
data set is ready and the time that BJP/360 processes an ENDJOB
for the job, the job is represented in a GMF message queue. The
particular queue used is specific to the WMO database to which the
job belongs. Thus the logical queue name is the triple:

(NSW system, WMO host, WMO cycle number)

where "NSW system" is used to keep separate the various NSW's that
can be running on the UCLA host simultaneously (User system,
Candidate system, Development system, etc.). Since GMF queues are
assigned 8-character alphanumeric names, this logical name is
mapped onto a real name of the form

sccccccc

where:

"s" identifies the NSW system, and is gotten from the BJP/360
initialization parameters. By convention, we use the three EBCDIC
"national" characters, "@", "#", and "$" for this purpose, since
they never occur as the leading characters of queue names created
by other GMF users. (There is no fencing of GMF queue name space
for NSW.)

* F.Fd~'I..%

Cuntrolling NSW Tools and Configurations under OS/MVT
Decembir 1, 1980 -- Part IV: BJP/360

PAGE 25

"ccccccc" is a seven-digit base-32 number (the base-32 digits are
defined to be A-Z and 0-9, excluding "I", "0", "0", and "1"). It
thus carries the same significance as a 35-bit binary number. The
value of the number is:

(nsw host number) * 65536 + (WHO cycle number)

The contents of a "message" in a GMF queue include:

* The charge number associated with the job.

* The TSO initials, if any, associated with the job.

* The name of the SYSOUT data set.

* The volume on which the SYSOUT data set resides (this can also
be determined from the system catalog).

* The local job name.

* The cost of the job.

" Values of the job's consumption of various system resources that
are components of job billing.

An important side effect of the selected workspace naming scheme
allows much information about a job to be recovered from its GMF
queue entry. This is significant when the incarnation of BJP/360
reading the GHF queue is not the one that submitted the job. A
part of the data in the GMF queue is the name of the SYSOUT data
set. This name can be parsed to yield the workspace name, which
can be parsed to yield the NSW system, the WHO host number, the
WHO cycle number, and the NSW job number. Another part of the
data gives the local job name directly.
The set of currently defined GMF queues is summarized by an

main-storage table containing for each queue name:

" The queue name.

* The binary host number and cycle number.

* A pointer to the last-read entry in the queue.

* Various values used by GHF to manage the queue.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 26

4.2.7.3. THE SHORT-TERM MEMORY

Because the two tables mentioned do not span the entire lifetime
of a job, and because there are instants when a job is in
transition between those tables, BJP/360 keeps an internal
i"short-term memory" table. This table contains all those jobs

that have been mentioned in transactions during this incarnation
of BJP/360, as well as those represented in GMF entries when
BJP/360 initialized. It is thus highly likely to contain an entry
for an old job mentioned in a new transaction. For each known
job, this table contains:

* The job's NSW name -- the host number, cycle number, and job

number.

* The job's local name.

* The time the job's status was last updated.

* The status code at last update.

* The status message at last update.

* The last value of "qproceed".

* The values for the accounting list.

* A pointer to the job's entry in the GMF queues.

The purpose of the status information and its timestamp is to
support a feature not implemented at this writing. Since there
are instants when a job is in transition between TMT and GMF, if a
status query fails to locate a job, it can be said to be in the
state last tabled here. If, however, after an amount of time
specified by a BJP/360 initialization parameter, the job is still
not found, it should be assumed to be lost.

.3

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 27

4.2.8. LOGIC SUMMARY

The major routines of BJP/360 are summarized below

BJDISP is the mainline of BJP/360. It materializes the BJP process,
which remains alive until an MSG terminationsignal is
received, or until the process has been idle for an amount of
time gotten from a BJP/360 initialization parameter. During
the lifetime of the process, BJDISP waits for and processes
one event at a time, with no attempt at simultaneity. Events
are of three types: NSW transactions, GMF notifications, and
timer expirations. For each event that occurs, an appropriate
processing subroutine is selected and called.

BJENDC exists for the purpose of isolating the relationships between
the GMF queue names and workspace names and the things out of
which they are made.

BJENLST isolates the encodement of common list structures to one 0
routine. There are separate entries to encode the tool id
list, the workspace descriptor, the accouting list, and the
status list.

BJENRPL is a short piece of very common code to encode output values
and replies to a transaction.

BJFNDJ locates or builds an entry in the short-term memory table for
a given job.

BJFNDQ locates or builds an entry in the main-storage GMF-queue
summary table, corresponding to a given queue name. If a
change of cycle number is detected, BJNEWQ is called.

BJGETP reads the BJP/360 initialization parameters.

BJGMFCL closes out GMF in response to an error or a BJP shutdown.

BJGMFOP attempts to open or re-open the GMF connection. When it is
successful, it locates each BJP queue and establishes a
notification link to that queue.

BJINIT initializes common data areas.

BJNEWQ schedules the cleanup of the GMF queue space and the data set
name space when a change of cycle number is detected. In the
current implementation, it is only a stub that logs a message
about the need for a cleanup.

P%.7PO 4 PL~ *.A ILI

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 28

BJPALJ processes the ALLOCATEJOB transaction.

BJPEND processes the ENDJOB transaction.

BJPLID parses the tool id list that is the first element of every
incoming transaction.

BJPQRY processes the QUERY transaction.

BJPSTRT processes the STARTJOB transaction.

BJREJEC builds an error message and transmits it in response to a
remote transaction directed toward the BJP.

BJXNOT reads GMF messages, updates the internal tables accordingly,
and sends the JOBHALTED transaction to the WHO.

BJXPCP processes transaction events as signalled through the PL/PCP
package (reference 15). For "CALL" type events, it parses
enough of the transaction to identify the job being spoken of
and calls the appropriate procedure processor.

BJXTIM maintains an outstanding timer interval of a duration
specified by an initialization parameter. On expiration of
the interval, it does three things:

* If GMF is not open, it simulates a GMF notification, which
will result in an attempt to re-open GMF.

* If enough idle time has gone by, and if there are no jobs in
the short-term memory table, it initiates BJP shutdown.

If shutdown is not to be initiated, it sets up another timer
interval.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 29

4.3. APPENDIX: BJP/360 INITIALIZATION PARAMETERS

BJP/360 decodes a set of initialization parameters from a
configuration data set which may optionally be supplied under file
name (DDNAME) PARMS. This data set is in the form of a PL/I GET DATA
input stream. The following data may be specified, where each name
should be qualified by the name "P.":

Name: Type: Default: Meaning:

TMT_TIMEOUTMINS FIXED 5 Minutes to allow a job
to be "not found" before
calling it "lost". The
mechanism to use this
datum is unimplemented.

MAX MINS IDLE FIXED 30 The amount of time to
allow BJP/360 to be idle
before shutting it down.

NAP_INTERVAL FIXED 30000 The timer interval, in
.01 seconds.

MSGTIMEOUT FIXED 6000 The MSG message timeout
(not the PL/PCP transaction
timeout), in .01 seconds.

GMT-ADJUSTMENT FIXED 8.0 Number of hours EARLIER
than Greenwich to assume
the local clock to be
running. May be signed
and may carry a fraction
of ".0" or ".51.

SIZE_QUEUELIST FIXED 10 Number of entries in the
internal GMF queue summary
table. Places a bound on
the number of WHO's that
can be handled.

(continued)

'iJ

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 30

Name: Type: Default: Meaning:

SIZEJOBLIST FIXED 100 Number of entries in the
internal short-term-memory
table. Places a bound on
the number of jobs that
can be handled at one time.

GENERICNAME CHAR 'BJP' BJP/360's generic name.

CHARGENUMBER CHAR 'NSWO01' UCLA charge number to use
for submitting jobs and
for making up workspace
names.

INITIALS CHAR 'NnK' TSO user initials to use
for making up workspace
names.

SUBMITPASSWORD CHAR 'PROTOCOL' Password associated with
UCLA charge number to use
for submitting jobs. -

PREFIX CHAR '$' Unique initial character
to identify NSW system,
for making up GMF queue
names and workspace names.

OUTPUTVOLUME CHAR 'NSWP01' Volume on which to request
DSKWTR to write SYSOUT data
sets.

SUBMITDESTINATION CHAR 'U' ; "Destination" parameter to

give to SRS when submitting
jobs. 'U' instructs OS//MVT
to deliver the job's output
to DSKWTR.

I

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 31

REFERENCES

1] Schantz and Millstein, "The Foreman: Providing the Program
Execution Environment for the National Software Works." BBN
document 3442 and MCA document CADD-7701-0111, January 1, 1977.
References to this document are as it has been amended by various r
network messages and verbal agreements, particularly the message
from Schantz to Braden dated July 11, 1977.

[2] Bolduc, "IBS meta-language Facilities". MCA unpublished working
paper, 1980.

[3] Braden and Ludlam, "FP/360 -- The NSW MVT File Package". UCLA
document UCNSW-204, November 20, 1980.

4 J Sluizer, "The Works Manager Procedures: Externally Callable
Routines in the Works Manager Maintenance Manual". MCA document
CADD-7906-0118, June 1, 1979. 0

5 1 Massachusetts Computer Associates, "The A-Level System
Specification for the National Software Works (preliminary)". May
15, 1979.

6 1 Muntz, "Batch Job Package -- External Specification." MCA working
paper, January, 1978.

1 7 1 Muntz, "Batch Job Package -- Functional Description and
Transmission Formats." MCA working paper, March 16, 1978.

8] Rivas, "using the System Routine SVC to Submit Jobs". UCLA
document S-179, August 12, 1975.

9] IBM Corporation, "IBM System/360 Operating System: Job Control

Language Reference". IBM order no. GC28-6704, 1976.

10] Braden, "PL/B8 -- A PL/I Interface Package for NSWB8". UCLA
document UCNSW-403, November 15, 1980.

11] Worth, "Programming Using the General Message Facility". UCLA

document S-180, August 14, 1975.

12] Braden, "PL/GMF -- PLIX Interface to GMF". UCLA document S-182,

August 14, 1975.

13] Braden, et. al., "An Implementation of MVT". UCLA document TR-1,

August, 1969.

14] DeLa Roca and Ludlam, "PLIDAIR -- Dynamic Allocation from PL/I".

UCLA document UCNSW-407, February 11, 1980.

~~5% %%%~~~*J

* * ~ .~ ~ - . sD .P

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part IV: BJP/360

PAGE 32

15] Ludlam, "PL/PCP -- An NSW Procedure Call Protocol Package for
PL/I". UCLA document UCNSW-402, November 15, 1980.

16] Ludlam and Rivas, 'tPL/MSG -- An MSG Interface for PL/I". UCLA
document UCNSW-401, November 15, 1980.

I.

'I

Sp"

S!

(?

" "ii"''V

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PART V

Configuration Management
for the Development Execution Environment

0

This section is separately available
as UCLA document UCNSW-208

St.

,1
* ** 1 ~.*V ~'o,]9

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

TABLE OF CONTENTS

5. PART V: CONFIGURATION MANAGEMENT.. 1
5.1. ENVIRONMENT OF INTEREST............ 1
5.1.1. CONTENTS OF FILE "SCMDLIB".. 2
5.1.2. CONTENTS OF FILE "SCMDPROC".. 4
5.2. PRESENT CAPABILITIES............ 6
5.2.1. LOGGING ON............... 6
5.2.2. UPDATE HISTORY RECORDING.......... 7
5.2.3. PRIMITIVE VERSION NUMBERING.. 8
5.2.4. PRIMITIVE ENFORCEMENT........... 9
5.2.5. PRIMITIVE DERIVATION TRACING 10
5.3. AN INTERIM CONFIGURATION MANAGEMENT PROPOSAL 12
5.3.1. BASIC CONCEPTS 13
5.3.2. USAGE IN THE EXECUTION ENVIRONMENT 15
5.3.3. PROGRAMS REQUIRED 16
APPENDIX -- SAMPLE "CONFIG" FILE 17
REFERENCES 18

4LJ

St

0/

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Port V: Configuration Management

PAGE 1

5. PART V: CONFIGURATION MANAGEMENT

5.1. ENVIRONMENT OF INTEREST

In the NSW Development System, configuration management of the
execution environment is primarily concerned with only two files -- a
library of executable programs usually called SCMDLIB, and one of
canned procedures usually called SCMDPROC. In the schemes being
proposed here, source code is excluded purely as a matter of the
limiting of scope. Tool-related data is excluded as being independent
of the configurations that we need to control. MSG-central is
excluded because, since the UCLA implementation is presently under the
control of the local Operating Systems group, its configuration is
outside the control of NSW.

This document considers only the Development system; however, almost
everything said here applies equally well to all NSW systems. Any
configuration management scheme must be designed to be useful in the
context of the group of four such systems currently maintained at
UCLA. These systems share some source code.

i0

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 2

5.1.1. CONTENTS OF FILE "SCMDLIB"

BJP

This module is the Batch Job Processor.

FM

This module is the Foreman mainline.

FMECIMG

This module is the Foreman's Encapsulator Command Interpretor
(ECI) subcomponent.

FMINIT

This module reads the Foreman's configuration file and sets
internal data accordingly.

FP

This module is the File Package mainline.

FPBCMGR

This module is the File Package's Basic Copy Machine
subcomponent.

* FPGTTAB

This module is the Global Type Table as referenced by both the
File Package and the ECI.

FPINIT

This module reads the File Package's configuration file and
sets internal data accordingly.

MSGSTAX (alias MSGCMD, MSGEDIT)

This module is the separately-loadable parts of the PL/MSG and
W MSGBUG packages

M2

This module is the passive half of the Ml/M2 pair of MSG
measurement processes.p!

°I

Controlling NSW Tools and Configurations
under OS/MVT

December 1, 1980 -- Part V: Configuration Management
PAGE 3

TCAM

This module is the passive half of the UTEL/TCAM pair of
processes for testing the special UCLA TCAM
direct-connections.

T2

This module is the passive half of the Tl/T2 pair of MSG
exercising processes.

T4

This module is the passive half of the T3/T4 pair of
direct-connection exercising processes.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 4

5.1.2. CONTENTS OF FILE "SCMDPROC"

BJP

This procedure drives the Batch Job Processor.

FIRST

This procedure is executed when any NSW TSO server process is
logged on. It sets up an initial "USE" library.

FLPKG

This procedure drives the File Package as an MSG-initiated
process.

FOREMAN

This procedure drives the Foreman as an MSG-initiated process.

LIVEFM

This procedure drives the Foreman as a terminal-initiated
process.

LIVEFP

This procedure drives the File Package as a terminal-initiated
process

M2

This procedure drives the M2 measurement process.

PBJP

This text segment is the BJP's configuration file.

PFM

This text segment is the Foreman's configuration file.

PFP

This text segment is the File Package's configuration file.

TCAM

This procedure drives the TCAM test process.

%"'.

* ~, - i% ~ ~ -- .- ~ .,.~ . ~ 9*w%.9LA4

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 5

TESTFM

This procedure drives the Foreman as a terminal-initiated
process under the TSO TEST debugger.

TESTFP

This procedure drives the File Package as a terminal-initiated
process under the TSO TEST debugger.

T2

This procedure drives the T2 test process.

T4

This procedure drives the T4 test process.

40

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 6

5.2. PRESENT CAPABILITIES

In the present system, configuration management has to be done
completely manually, since no aids to such a process exist. The
scheme used can consist only of reccommended procedures, without any
enforcement mechanisms; therefore, it will work only to the extent
that TBH programmers toe the line.

5.2.1. LOGGING ON

The UCLA Development NSW is stored under and operates from directory
AHA183.NWT. In order to operate on Development NSW data with proper
automatic data set name prefixing, it is necessary to log onto TSO
under this directory. Assuming ARPANET access, such a session will
follow this skeleton (upper case is system output, lower case is
user input):

UCLA OAC 3033 SERVER TELNET <VERSION STAMP>
<BROADCAST MESSAGES>

ENTER COMMAND OR 'HELP'
logon nwt/<password>
IKJ56455I NWT LOGON IN PROGRESS AT <TIME AND DATE>
WELCOME TO UCLA-OAC TSO
READY: <user commands>

READY: logoff
<RUN STATISTICS>
IKJ56470I NWT LOGGED OFF TSO AT <TIME AND DATE>

For "<password>" substitute the current UCLA Development NSW
password string, which qualified personnel can get from the UCLA NSW
development staff.

-4A CT

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configurstion Management

PAGE 7

S
5.2.2. UPDATE HISTORY RECORDING

The main vehicle for update history recording is a sequential text
file, named CONFIG, in the NSW system being managed. Whenever an
update is made to the system, an entry is added to CONFIG to
document the change. This entry is edited in over a standard
template, including:

* Date and time of system modification.

* The simple name of the library modified (SCKDPROC or SCMDLIB).

* The member name.

* Person identification of modifier.

* A prose explanation of the reasons for and the impact of the
change.

Whenever a new entry is added to CONFIG, it is placed at the
beginning, effectively pushing the other entries down. Thus the
file is maintained in inverse chronological sort. Each new entry is
also transmitted to ACC, via network mail, as a notification of
change.

CONFIG is updated only by TBH personnel, but it can be examined by
ACC. To do so, ACC logs onto UCLA TSO and enters the command

DISPLAY CONFIG

DISPLAY accepts the same subcommands as the NSW tool named
DISPLAY-UC [ref. 1].

J)

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 8

5.2.3. PRIMITIVE VERSION NUMBERING

Since there is no facility for keeping multiple versions of a single
member in the same library, UCLA has adopted an informal convention
for identifying current, pending, and obsolete versions of members.
If 'x is a member name, then the name 'x@' refers to the most
recently displaced version. Likewise, 'x@@' or 'x@2' is next
oldest, 'X@3' is next, and, in general, 'x@n' is 'nth' oldest. If
'x$' exists, it is a version pending installation (note that "$"

modules are not yet represented in CONFIG). If 'x' has more than
six characters, then it may be truncated on the right to make room
for modifiers. This requires that names not depend on the seventh
and eighth characters for uniqueness.

This scheme requires that each update involve renaming the entire
set of related members. It has worked in the past only because we
have typically kept only one or two old versions.

A typical directory, viewed with the 'PDS' processor (the same as
NSW tool LIBMAINT-UC [ref. 2]), might look this way:

pds scmdlib
PDS: d
BJP BJP@ FM FM@ FMECIMG FMECIMG@
FP FP@ FPBCMGR FPBCMGR@ FPGTrAB FPGTTAB@
FPINIT MSGCMD -A MSGEDIT -A MSGSTAX M2 TCAM
T2 T4

Controlling NSW Tools snd Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 9

5.2.4. PRIMITIVE ENFORCEMENT

At present, no enforcement mechanisms can be provided for SCMDPROC;
however, certain features of IBM load modules and the Linkage Editor
program can be used to provide minimal policing for SCMDLIB. With
each load module stored, there is associated a "last link-edit"
date. Each subsequent binary patch associates a control-section id
and patch date with the load module. These associated data can be
listed with the PDS HISTORY subcommand, thus giving ACC a mechanism
for validating the contents of CONFIG. For example:

PDS: hi bjp
HISTORY SUMMARY FOR MODULE BJP
LAST LINK-EDITED ON 5/07/79
IMASPZAP UPDATE HISTORY BY CSECT -

BJDFLT 6/26/79 TSO--HCL
BJDFLT 3/01/79 TSO--HCL
BJDFLT 3/01/79 TSO--HCL
BJDFLT 3/01/79 TSO--HCL
BJDFLT 1/22/79 TSO--HCL
GMOPEN# 5/11/78 TSO--HCL
BJOVMSG 5/23/78 TSO--HCL
PDS: hi bjp@
HISTORY SUMMARY FOR MODULE BJP@
LAST LINK-EDITED ON 8/14/78
IMASPZAP UPDATE HISTORY BY CSECT -

BJDFLT 3/01/79 TSO--HCL
BJDFLT 3/01/79 TSO--HCL
BJDFLT 3/01/79 TSO--HCL
BJDFLT 1/22/79 TSO--HCL
GMOPEN# 5/11/78 TSO--HCL
BJOVMSG 5/23/78 TSO--HCL

'J'

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 10

5.2.5. PRIMITIVE DERIVATION TRACING

It is possible to maintain a primitive derivation trace within each
load module, and to reference it through the PDS HISTORY subcommand.
For each control section of a stored load module, there can exist up
to forty characters of "user-supplied update history". This
information is specified directly on linkage-editor control cards.
It can be replaced, but not added to, by subsequent linkage edits.
If it is not replaced, it will be propagated through the linkage
editor, and will still be available in any load module of which the
original control section is a part.

Each compiled program can be stored with the same sort of data as in
CONFIG, less the prose, in this history string. Then the PDS
HISTORY command will list all that data for every NSW-produced
control section in a load module of SCMDLIB. This provides an
mapping back from the executable program to the compiled routines
which make it up. The linkage editor control cards to store this
data can be supplied automatically by the existing NSW maintenance
tools. A sample PDS output (not from SCMDLIB) follows:

PDS: hi objscan
HISTORY SUMMARY FOR MODULE OBJSCAN
LAST LINK-EDITED ON 1/31/80
USER-SUPPLIED UPDATE HISTORY BY CSECT -
PLISTART 1/31/80 OBJSCAN JAN3080 152521 HCL AHA183.NWX
PLIMAIN 1/31/80 OBJSCAN JAN3080 152521 HCL AHA183.NWX
INFILE 1/31/80 OBJSCAN JAN3080 152521 HCL AHA183.NWX
OUTFILE 1/31/80 OBJSCAN JAN3080 152521 HCL AHA183.NWX
SYSPINT 1/31/80 OBJSCAN JAN3080 152521 HCL AHA183.NWX
OBJSCAN2 1/31/80 OBJSCAN JAN3080 152521 HCL AHA183.NWX
IELCGMV 1/31/80 OBJSCAN JAN3080 152521 HCL AHA183.NWX
OBJSCAN1 1/31/80 OBJSCAN JAN3080 152521 HCL AHA183.NWX

This example shows a module produced by a single assembly and a
single link; however, most NSW modules would show more variation in
the data. In a more complex module, the listing of this history
data can become quite massive. It can be halted by entering ctl-C
or the TELNET IP sequence. That should return the session, as soon
as buffers have emptied, to the "PDS" prompt control level.

The fields shown are:

* Control section or common block name.

* Date of linkage-edit that inserted this history line.

°'PI

Q
Controlling NSW Tools and Canfigurations under OS/NVT
December 1, 1980 -- Part V: Configuration Manapement

PAGE 11

* Name of load module produced by that linkage edit (in NSW,

usually the same as the source module).

* Date of submission of compilation job.

* Time of submission of compilation job.

* Id of Person submitting compilation job.

* Directory under which compilation was submitted. In this

example, the module was compiled under the Debug NSW (NWX), as
will frequently be the case for control sections that find their
way into the Development NSW.

%

-I

',~ * b
o

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 12

5.3. AN INTERIM CONFIGURATION MANAGEMENT PROPOSAL

This section is a proposal for comment only. It is not an offer or
commitment to produce a system.

Interim Configuration Management, or ICM, is a scheme to allow NSW ACC
to exercise minimal essential configuration management control over
the UCLA TBH implementation software. At the same time, it provides
the basic hooks for functions that local software development and
maintenance personnel need to keep track of software updates. At this
point, the scheme is a rough proposal, and it should be expected to
change in detail, if not in concept.

ICM proposes that all UCLA NSW libraries be managed with special tools
and/or procedures that will make them appear to support multiple
versions of member names. These versions will carry absolute version
numbers and creation stamps. There will be procedures for
manipulating these members and versions, and for aging obsolete
versions to offline storage without destroying them.

The ICM procedures are only aids, and are not intended to be enforcing
mechanisms. They are not complete enough to form a closed, rigid
system, and so will have to be subverted on occasion in order to get
the job done.

IL

I

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 13

5.3.1. BASIC CONCEPTS S

* All data, text or binary, will be stored in PDS's in order to
take advantage of the user-defined attributes that they provide.
This is already being done for other reasons.

* Every member will have associated with it a member name and an
absolute version number. Multiple versions of the same member
name may exist in the same library at the same time.

* Version numbering will be accomplished by storing all data under
special "invisible names" in the PDS. The "visible name" of a
member will be an alias of just one of these names.

* The "visible" member name will refer to the "current" (latest)
version of the member. Under this name, it is available to any
program, just as without ICM. Other versions are accessible
only through special tools.

* Version numbers are meaningful only in the context of a given

PDS. Copying a member from one file to another does not
preserve the version number sequence from the input library.

Therefore, installation by renaming an entire library should not

be encouraged.

* Normally, when a member is "replaced", its previous version is

pushed down. This means that the data associated with its

previous version remains associated with the "hidden name" of

that version. The member name, along with a new "hidden name"

become associated with the new version.

* However, it will be possible to actually replace the current

version. In this case, both the member name and the "invisible"
name are altered to refer to the new data.

* Associated with each version of each member is a "version

stamp". This identifies the JOB that created the version. It
consists of: 1) the date and time of the creation of the job;
2) the initial member name under which the data was stored; 3)
the user identification of the creator of the job; 4) the NSW
system identifier of the NSW system under which the job was run
(as the Development or Debug system).

Controlling NSW Tools and Configurations under OS/VT
December 1, 1980 -- Part V: Configuration Management

PAGE 14

* The version stamp will be treated specially for load modules.
It will be associated both with the library member and with each
control section that occurs within the program. The Linkage
Editor will propagate the latter association into any executable
program which includes the member. It will thus be possible to
"map" such a program and list the version stamp of each of its
components. This will be an aid to debugging as well as to
configuration management.

* Any library may have portions aged to offline storage. In this
case, obsolete versions of some members may not actually be
present in the PDS. To keep track of these members, a PDS may
contain special "backup" members which contain, instead of data,
lists of members that have been demoted to offline storage, and
some information on where to look for them. These members can
be accessed by special tools.

..

C

Controlling NSW Tools and Configuraticis under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 15

5.3.2. USAGE IN THE EXECUTION ENVIRONMENT

The outputs of all compilers will be stored with version numbers and
stamps. The executables linked into SCMDLIB will carry version
numbers and stamps, as well as propagating the stamps of all
component routines. There will be provisions for listing the
version-related data in a PDS directory, and for mapping a load
module with version stamps listed per control section. Since
creation of load modules is already done using NSW-specific tools,
these procedures are not likely to be subverted through
carelessness.

Update of SCMDPROC will be done only through special EXTRACT and
FILE tools, so that all members will carry version numbers and
stamps. Since this kind of update is normally performed by a naked
editor, it will take a certain increase in programmer discipline to
avoid subverting the system in the case of this library.
Fortunately, however, updates to this library are less common than
to SCMDLIB.

Updates will still be reported using the CONFIG file and network
mail, as described in section 1.

A backup-and-purge tool will be provided, but it must be manually
initiated. No automatic handling of exploding file problems will be
provided.

Re-creation of a previous configuration can be done with standard
IBM and UCLA utility programs, along with some special programs
provided for ICM. Such re-creation should always create new version
numbers, even if this means that the same PDS member has two version
numbers, and thus two "hidden names".

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 16

5.3.3. PROGRAMS REQUIRED

A full implementation of this interim scheme would require writing
or modifying several programs or procedures, some trivial, some not
so much so.

* EXTRACT MEMBER -- Given a library name, a member name, an

optional version number, and an output file name, extract a
member's data into a sequential file or an uncontrolled library.
This program should be trivial.

* FILE MEMBER -- given the name of a sequential file or an
uncontrolled PDS member, a library name, and a member name,
store the input data in the library as the current version of
the member, providing a version stamp. There should be an
option to replace or push down the member. This program should
be trivial.

* LINK-EDIT POSTPROCESSOR Post-process a library into which new
programs have just been link-edited, to simulate the FILE MEMBER
program's action. This might well be the same program, used in
a slightly different way.

* BACKUP AND PURGE -- Copy to an offline file those members of a
library which exceed a certain age and are not current. Add to
the library a special "backup" member which contains a list of
those versions copied. Then delete the versions and
garbage-collect the file. This program is simple in concept,
and if enough existing subprograms can be used unchanged, it
will be simple to implement.

* UTILITY MODIFICATIONS -- The existing PDS utility program (NSW

tool LIBMAINT-UC) should be modified to accept and report member
names in the form of visible names and version numbers, and to
group multiple versions together as is done by TENEX. Since
this is an existing program of some complexity, this might be a
complex task.

* I
I.

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 17

APPENDIX -- SAMPLE "CONFIG" FILE

NOTE -- TABSET ON(10 18 26 37 43)
10/12/79 00:00 SCMDLIB (FPBCMGR) HCL CORRECT INVALID OVERLAY.
10/05/79 00:00 SCMDLIB (FP) HCL CHANGE ERROR CLASS FOR WMO.
09/28/79 00:00 SCMDLIB (FM) HCL STOP FALSE LNDSAVE'S.
09/13/79 00:00 SCMDLIB (FPGTTAB) HCL RELEASE 4.1.
08/15/79 00:00 SCMDLIB (FM) HCL RELEASE 4.1.
08/14/79 00:00 SCMDLIB (FMECIMG) HCL RELEASE 4.1.
08/07/79 00:00 SCMDLIB (FPBCMGR) HCL RELEASE 4.1.
08/03/79 00:00 SCMDLIB (FP) HCL RELEASE 4.1.
05/07/79 00:00 SCMDLIB (BJP) HCL RELEASE 4.0.

I4

Controlling NSW Tools and Configurations under OS/MVT
December 1, 1980 -- Part V: Configuration Management

PAGE 18

REFERENCES

1 I Ludlam, "Using the DISPLAY-UC Tool". UCLA document UCNSW-107, March 1,
1980.

[2 1Ludlam, "Using the UCLA Interim Library Management Tool Kit". UCLA
* document UCNSW-l0l, July 18, 1979.

0UBMUEWIM&CL

